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A B S T R A C T

Rubber (Hevea brasiliensis) plantations are a rapidly increasing source of land cover change in mainland
Southeast Asia. Stand age of rubber plantations obtained at fine scales provides essential baseline data, in-
forming the pace of industrial and smallholder agricultural activities in response to the changing global rubber
markets, and local political and socioeconomic dynamics. In this study, we developed an integrated pixel- and
object-based tree growth model using Landsat annual time series to estimate the age of rubber plantations in a
21,115 km2 tri-border region along the junction of China, Myanmar and Laos. We produced a rubber stand age
map at 30m resolution, with an accuracy of 87.00% for identifying rubber plantations and an average error of
1.53 years in age estimation. The integration of pixel- and object-based image analysis showed superior per-
formance in building NDVI yearly time series that reduced spectral noises from background soil and vegetation
in open-canopy, young rubber stands. The model parameters remained relatively stable during model sensitivity
analysis, resulting in accurate age estimation robust to outliers. Compared to the typically weak statistical re-
lationship between single-date spectral signatures and rubber tree age, Landsat image time series analysis
coupled with tree growth modeling presents a viable alternative for fine-scale age estimation of rubber plan-
tations.

1. Introduction

Rubber trees (Hevea brasiliensis) produce latex, serving as the pri-
mary source of natural rubber. Unique properties of elasticity, resi-
lience, and toughness (Payne, 1962) have made rubber an ideal
polymer for a wide variety of applications in transportation (e.g., tires),
industrial (e.g., silicone sheets), consumer (e.g., clothing), and medical
sectors (e.g., tubing and cord). The ever expanding demand for rubber
products has significantly boosted rubber cultivation, mostly in main-
land Southeast Asia, where more than 1.5 million ha of land were
converted to rubber plantation from 2003 to 2010 (Kumagai et al.,
2015). While global rubber prices weakened following the 2008 eco-
nomic recession, they were more recently observed to bounce back in
tandem with increased demand in leading rubber markets, such as
China (IndexMundi, 2017). Today’s rubber plantations have expanded
rapidly to non-traditional rubber tree-growing regions, including

southern China, eastern Myanmar, northern Laos, northeast Thailand,
and Cambodia (Li and Fox, 2012). Such fast pace of land-cover con-
version provides the countries, their agribusiness, and local farmers
with high economic returns (Smajgl et al., 2015). However, financial
gains have come with certain costs. The rubber industry has been found
to cause substantial carbon emissions, reduced water and food security,
biodiversity loss, and decreased provision of ecosystem services (Mann,
2009; Ziegler et al., 2009; Yi et al., 2014; Blagodatsky et al., 2016;
Giambelluca et al., 2016). Other intertwined issues include stress on the
national land tenure system, military/business land grabbing, ethnic
strife, and territorial control (Woods, 2012).

Estimating the age of rubber plantations provides essential baseline
data for understanding the role of rubber boom in shaping the agri-
cultural, forest and urban landscapes of mainland Southeast Asia.
Particularly, countries in this region have diverse political and socio-
economic statuses. The timing of rubber cultivation informs us on the
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variation in rubber policies and plantation activities in response to the
changing global rubber markets. Accurate age estimation of rubber
plantations further facilitates agricultural land management by com-
plementing the national and regional land use maps (e.g., GlobeLand30;
Chen et al., 2014b), which typically contain broad land use types
without detailed information about major cash crop in the region. The
majority of remote sensing-based rubber tree mapping activities has
been conducted fairly recently with an emphasis on estimating the areal
extent of rubber plantations. Ideally, if the spatial distribution of rubber
plantations is accurately extracted on an annual basis, the age of rubber
trees becomes readily available. Directly linking single-date spectral
signatures with land-cover types (including rubber tree cover) remains
classic, and was confirmed with moderate success in several projects
(e.g., Li and Fox, 2011; Zhai et al., 2012; Trisasongko, 2017). However,
rubber trees could expose strong spectral similarities with natural for-
ests, croplands or shrublands during certain seasons (Li and Fox, 2012;
Dong et al., 2012). Without fully understanding their phenological
traits, practitioners run the risk of misclassifying rubber with other
species growing in the same area.

To address this challenge, Dong et al. (2012) compared the intra-
annual variability of three MODIS indices, namely NDVI (Normalized
Differential Vegetation Index), EVI (Enhanced Vegetation Index), and
LSWI (Land Surface Water Index) among rubber, paddy rice cropland,
and evergreen forest. Superior mapping performance was achieved by
applying a thresholding approach to two averaged NDVI images from
the rubber tree growing season (March to October) and non-growing
season (October to March of next year), respectively. Instead of using
two NDVI images, Li and Fox (2012) imported a total of 29 MODIS
semimonthly NDVI composites for an entire year to the Mahalanobis
distance classifier, and successfully extracted both young (< 4 years
old) and mature (≥4 years old) rubber trees. However, the temporal
profiles of spectral signatures from MODIS dense time series possibly
contain atmospheric noises and gaps (e.g., caused by clouds). Senf et al.
(2013) fit non-linear least squares models to the MODIS raw time series,
and extracted the simulated phenological metrics (base values of
season, start of season, maximum of season, and end of season) to be
used in a Random Forest classification.

While the dense time series from MODIS facilitates vegetation
phenological analysis, its coarse spatial resolution (250m) poses a
challenge for delineating small-size rubber plantations managed by
smallholders. In fact, smallholders predominate rubber production in
several large rubber producing countries and regions. In Thailand, for
instance it is estimated that 90 percent of rubber is produced by
smallholders (Fox and Castella, 2013). With a finer spatial resolution,
Landsat (30m) imagery has demonstrated success in several rubber
mapping projects (e.g., Chen et al., 2012; Dong et al., 2013; Grogan
et al., 2015). For example, Dong et al. (2013) discovered a unique
phenological phase (late March to April) in south China, where rubber
trees underwent rapid foliation and canopy recover causing high
spectral reflectance in the near-infrared region of the spectrum. With
such strategy, the spatiotemporal dynamics of rubber plantations may
be captured if high-quality Landsat time series are available on an an-
nual basis. It alleviates the need for intra-annual dense time series,
which is challenging to acquire in cloud-prone tropical and sub-tropical
mainland Southeast Asia. However, high-quality data does not ne-
cessarily lead to an accurate estimation of rubber tree age. Previous
efforts were primarily devoted to extracting the areal extents of mature
rubber trees (typically 6–7 years or older) with closed canopies [e.g.,
Chen et al. (2012); Dong et al. (2012; 2013); Li and Fox (2012)]. The
spectral characteristics of open-canopy, young rubber stands are often
affected by the spectral ‘noises’ from background land cover, e.g., bare
soil or vegetation, causing high mapping errors.

The main objective of this study is to develop a fine-scale, remote
sensing approach to improve the estimation accuracy of the stand age of
rubber plantations. Here, we propose an integrated pixel/object-based
tree growth model using annual Landsat time series. The model is

developed with two main considerations. First, we capitalize on
Geographic Object-based Image Analysis (GEOBIA; Blaschke et al.,
2014; Chen et al., 2018; Chen and Weng, 2018) using image-objects
(aggregates of pixels) to mitigate the effect of background spectral
noises typically occurring in young rubber stands. Since image-objects
from different dates vary in geometry even if they represent the same
geographic features (Chen et al., 2014a,b), we integrate pixel- and
object-based image analysis facilitating the comparison among multi-
temporal image-objects for constructing an improved Landsat time
series database. Second, the cash crop rubber trees expose an annually
fast growing pattern, which differs from that of natural forests and
many other crop types (e.g., paddy rice). Fitting a tree growth model to
the improved time series database provides a potential means to cap-
ture the relatively unique rubber tree growth trajectories, from which
stand age can be determined. Such integration of remote sensing and a
long-term tree growth model differs from previous efforts that mainly
rely on spectral and short-term phenological traits of rubber trees.

2. Methods

2.1. Study area

The selected study area (centered at 21°25′50″N, 100°55′00″E) is a
tri-border region along the junction of China, Myanmar and Laos
(Fig. 1). It covers part of Yunnan Province (China), Shan State
(Myanmar), and Luang Namtha Province (Laos), with a total areal size
of 21,115 km2. The region features tropical and sub-tropical monsoon
climate, with an annual mean temperature of approximately 25°Celsius,
and annual precipitation ranging from 1000 to 2400mm (Liu et al.,
2013). Slopes and drainage dissect the rugged landscape of the region
with elevations ranging from 267m to 2555m above sea level. The area
also harbors exceptionally high levels of biodiversity, with more than
5000 flowering plant and fern species (Zomer et al., 2014). Forests
mainly include tropical rainforests, tropical monsoon forests, and sub-
tropical monsoon evergreen broadleaf forests (Liu et al., 2013).

Rubber plantations have been expanding rapidly in the region gra-
dually replacing ecologically important secondary forests and tradi-
tional upland agriculture and swidden farming (Li and Fox, 2012; Liu
et al., 2016). The regional rubber farms were initially established in the
1950s in Yunnan, China, where natural rubber was considered as an
important strategic national resource by the Chinese central govern-
ment (Smajgl et al., 2015). Since the 1990s, rubber plantations have
risen in the neighboring Shan State (Myanmar) and Luang Namtha
Province (Laos). The pace of rubber cultivation was particularly rapid
in the first decade of the 21st century, mainly driven by globally strong
rubber markets and the growing demand from major rubber consumers,
e.g., China, India, United States and Japan (Alton et al., 2005). In
Xishuangbanna (south of Yunnan) alone, rubber plantations doubled
from 2007 to 2010 (Xu et al., 2013). Some parts of the study area in
Myanmar and Laos have also experienced a transition from cultivating
opium poppy to rubber trees, which was supported by the Opium Poppy
Substitution Planting programme (Liu et al., 2016). To date, the dec-
adal, fine-scale rubber expansion patterns remain to be well estimated,
preventing a timely analysis of the response of local rubber industry to
various policies, socioeconomic dynamics, and the fluctuation in the
global rubber market.

2.2. Data and pre-processing

The study area encompassed most of a single Landsat image foot-
print (path: 130; row: 45). Landsat time series were acquired for a
period of 15 years (2001–2015). Within this time window, rubber price
quickly surged to an all-time high and dropped to a decade low
(IndexMundi, 2017). We aimed to analyze the rate and spatiotemporal
pattern of rubber plantation expansion during the same window. Each
year, only one image scene was used and downloaded from the U.S.
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Geological Survey data portal (http://glovis.usgs.gov). We analyzed the
phenological traits of local vegetation and found a unique dry-season
phase (March to April), when the rapid foliation of rubber trees led to
higher NDVI values than many other plant types, which was relatively
consistent with the findings by Li and Fox (2012) and Dong et al.
(2013). In this study, all the annual images were acquired within or
close to this time window. The data were collected by three Landsat
satellites: Landsat 5 (L5), Landsat 7 (L7) and Landsat 8 (L8). More
specifically, 2001 (sensor: L7; Julian day: 108), 2002 (L7; 095), 2003
(L7; 098), 2004 (L5; 061); 2005 (L5; 047), 2006 (L5; 066), 2007 (L5;
085), 2008 (L5; 088), 2009 (L5; 106), 2010 (L5; 045), 2011 (L5; 080),
2012 (L7; 059,075,107), 2013 (L7; 061,077,093), 2014 (L8; 104), and
2015 (L8; 075). For the years 2012 and 2013, we gap-filled the Landsat
7 SLC-off data through mosaicking three images per year, simply filling
the missing pixel values with the available values from the other images
obtained from the same dry season. This study used the surface re-
flectance products derived from the raw Landsat imagery, which were
geometrically, radiometrically and topographically corrected by NASA
before being made available online.

The ground-truth data were collected mainly through photo inter-
pretation of the Google Earth (Mountain View, California, USA) high-
spatial resolution satellite imagery. We extracted a total of 300 sample
points. To ensure a balanced representation of rubber plantations and
other land cover types, a random stratified sampling strategy was used
with approximately 50% of the samples having rubber plantations
within a 15-year time frame (consistent with our study time window);
while the remainder did not. We slightly adjusted the location of rubber
samples to include a range of ages from young, middle-age to mature
plantations. This was completed to avoid a potential bias to certain age
groups during model calibration and validation. To reduce un-
certainties in photo interpretation, we visited some local regions in
Myanmar and Thailand, which had similar climate and rubber culti-
vation patterns as those in our study area. More specifically, we com-
pared rubber plantations from the local regions and those in the cor-
responding Landsat and high-resolution images. The experience of
understanding the plantation-image relationship was extended to in-
terpreting the images in our study area. Fig. 2 shows three field photos
corresponding to the three stages of rubber tree growth from an open-

canopy, young stand (a), a middle-age stand (b), to a closed-canopy,
mature rubber stand (c).

2.3. Age estimation of rubber plantations

There are three major steps in the proposed model: (a) building
yearly NDVI time series, (b) modeling rubber tree growth, and (c)
mapping the stand age of rubber plantations. In general, step (a) pre-
pared an improved NDVI time series database using an integrated pixel/
object-based approach. The database was used in step (b) for calibrating
a rubber tree growth model, which was subsequently applied in step (c)
for identifying rubber plantations and the associated stand age across
the entire study area. This is now discussed in more detail.

(a) Image-objects were firstly extracted from individual Landsat
images in eCognition Developer 8 (Trimble Navigation, Sunnyvale,
California, USA). A scale parameter (defining mean object size) of 60
was consistently used to derive image-objects at the small tree patch
level. While some tools (e.g., ESP, Drǎguţ et al., 2010) have been cre-
ated to automatically determine scale parameters based on local var-
iance, we still used the trial-and-error exploration with an aim to
slightly merge neighboring canopy and soil pixels in the plantation at
the young stage. This is because at the young stage, the spectral sig-
natures of rubber tree canopies and background soil often reveal high
contrast, causing a single plantation area to be overly segmented if local
variance is used. The high variation in the NDVI time series will make
fitting tree growth model a challenging task (see next step). The para-
meters of shape and compactness were set to the software default values
of 0.1 (shape) and 0.8 (compactness). We also evaluated other shape
and compactness values and obtained similar segmentation results,
which is consistent with our previous experience in segmenting forest
landscapes (Chen et al., 2015). A sample segmentation result is pre-
sented in Fig. 3, in which a rubber tree stand (overlapped with the
yellow-boundary image-objects) shows a growth pattern from young
(2005), middle-age (2010) to mature (2015). Particularly at the young
stage of tree growth as illustrated in the 2005 Landsat image, the
spectral variation within the yellow boundary is high, with grey color
representing soil and red color indicating vegetation cover. It is there-
fore challenging to delineate such a young tree stand using the classic

Fig. 1. Mainland Southeast Asia (left) and a Landsat 8 false-color composite (red: near infrared band, green: red band, blue: green band) of the study area (right),
which is a tri-border region along the junction of China, Myanmar and Laos. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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pixel-based approach. In this study, the yearly NDVI values were cal-
culated using the Landsat near-infrared and red reflectance bands,
which were averaged at the object level.

To build NDVI time series, we avoided directly comparing multi-
temporal image-objects, because these objects demonstrated incon-
sistent geometries (see yellow-boundary objects in Fig. 3) induced by
the change in tree crown density, plantation areal extent, and/or sun-
sensor geometry (Chen et al., 2011). Here, the time series was derived
from the areas corresponding to individual Landsat pixels (30× 30m;
see green grid cells in Fig. 3), although we still used the object-based
yearly NDVI values derived in the previous paragraph. Such an ap-
proach facilitated a straightforward comparison of NDVI values across
years, while mitigating the impact of spectral noises particularly from
young rubber tree stands.

(b) We modelled annual tree growth using a logarithmic function,
with NDVI serving as a proxy of plant productivity. According to our

initial experiments, logarithmic function demonstrated superior per-
formance simulating rubber tree growth, as compared to several other
types of functions (e.g., linear and exponential).

y a x b ε·ln( )= + + (1)

where y is the age of rubber stand, x is the corresponding NDVI value, a
and b are model parameters, ε is the error term. In this study, field
surveys and ground-truth data showed that rubber trees grow particu-
larly fast within the first decade of cultivation, and their NDVI values
become stable after trees reach maturity. Accordingly, we set a ten-year
maximum time window for fitting the model to each of the NDVI time
series. A minimum time window of three years was also chosen because
the model needed at least three observations to generate meaningful
results. Fig. 4 shows an example of NDVI trajectories within a 10-year
window from a rubber stand, a natural forest patch, and a non-rubber,
paddy rice cropland. The dotted lines are observations extracted from
the satellite-based NDVI time series (see Section 2.2). The solid trending
lines represent the corresponding fitted plant growth trajectories (using
Eq. (1). Generally, rubber plantations in our study area showed steeper
slopes of NDVI trajectories (i.e., larger a in Eq. (1) than natural forest
stands, non-rubber croplands or shrublands. In addition, land clearing is
a common practice prior to rubber cultivation in many areas of
Southeast Asia (Simorangkir et al., 2002). The initial value of a rubber
NDVI trajectory (i.e., b in Eq. (1) reflected a bare or near-bare ground
condition. In the study, the calibration/training of the tree growth
model used two thirds of the randomly extracted ground truth samples,
while the remainder was used in model validation for accuracy as-
sessment (see Section 2.4). Through calibration, we derived the optimal
range of model parameters a and b, which were applied to mapping the
stand age of rubber plantations described in the following section.

(c) Mapping the stand age of rubber plantations was performed on
NDVI time series at individual pixel locations. We first selected poten-
tial candidates as the starting year of rubber tree cultivation, where
NDVI values were smaller than 0.4 in the time series. This threshold
was chosen to represent bare ground conditions or land covered by low-
density vegetation. It was a relaxed threshold used to overestimate
rubber plantations. We then fitted the tree growth model to the NDVI
time series (Eq. (1) treating each candidate as the cultivation starting
year. All the possible time windows, ranging from 3 to 10 years, were
used for modeling. In many cases, the maximum time window was less
than 10 years, when the candidates were close to the end year of the
time series (2015). The candidate was finally chosen as the real starting
year of rubber tree cultivation based on two criteria: (i) The model
parameters a and b are located in the optimal value range (as described
in the previous paragraph), and (ii) the variation of a (slope of the fitted
trending line) is small, with the standard deviation value lower than
0.03. Criterion (i) was applied to identify possible rubber plantations,
capitalizing on the rapid growth rate of rubber trees (Fig. 4). Criterion
(ii) was mainly used to identify ‘spurious’ candidates within a rubber
NDVI time series, typically related to low data quality (e.g., caused by
cloud cover). Fig. 5 provides an example of two NDVI trajectories
starting from a real candidate (left) and a spurious candidate (right),
both from rubber tree stands. The tree growth model was fitted to the
NDVI observations using multiple time windows from 3 to 7 years.

Fig. 2. Field photos showing an open-canopy, young rubber stand (a), a middle-age stand (b), and a closed-canopy, mature stand (photo credit: Gang Chen).

Fig. 3. Image-objects (yellow boundaries) capturing three stages of rubber tree
growth, young (2005), middle-age (2010), and mature (2015). Three green grid
cells represent pixels covering the same part of a rubber tree stand over years.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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When the spurious candidate was treated as the starting year, all the
fitted tree growth models showed steep slopes, similar to those using
the real candidate (Fig. 5). However, the variation of a was high. Be-
cause the NDVI value corresponding to the spurious candidate was off
the rubber tree growth trajectory, feeding NDVI observations to the
model (i.e., testing different time windows) was found to cause high
variation. In this study, we used a sample of rubber plantations to train
the tree growth model (see sampling and model calibration in the
previous section), from which the variation threshold of 0.03 was de-
termined.

2.4. Accuracy assessment and model parameter evaluation

Using one third of the randomly extracted ground truth samples,
model performance was evaluated with classic R2 and RMSE for age
estimation, and a confusion matrix and kappa statistic for mapping the
spatial distribution of rubber plantations. Please be aware that the
proposed model emphasized on the plantations that were initiated
within the studied time frame (2001–2015). Rubber trees that were
planted prior to 2001 were not considered in this research, and ex-
cluded from map accuracy assessment. We further assessed the sensi-
tivity of the tree growth model by adding random errors to NDVI

Fig. 4. NDVI yearly trajectories for a rubber tree stand, a natural forest patch, and a non-rubber cropland. Landsat false-color composites (red: near infrared band,
green: red band, blue: green band) were used to represent the three types of land cover. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 5. Yearly NDVI trajectories starting from a real candidate year (left) and a spurious candidate year (right). The tree grow model was fitted to the data in various
time windows.

G. Chen et al.



observations. Such analysis was used to understand the robustness of
the proposed model to the uncertainties in NDVI values, typically
caused by the variation in image acquisition dates and/or inconvenient
weather conditions (e.g., cloud or fog cover).

3. Results and discussion

3.1. NDVI trajectories from pixel/object-based versus classic pixel-based
image analysis

The rubber plantations in the study area included both large-scale
and smallholder farms. In either case, the proposed pixel/object-based
approach was found to more effectively reduce spectral noise and to
extract NDVI time series with more apparent trajectory patterns than
the classic pixel-based image analysis. The size of plantation has no
direct impact on the extraction of time series. Although plantations may
be smaller than one pixel area (900 sqm), such practices are rare due to
the low economic feasibility. Fig. 6 illustrates three sample locations,
including two rubber (a and c) and one non-rubber (b) plots. Plots a and
c were covered by dense vegetation in 2002 (red color in the NIR-R-G
composite), which were erased in around 2007 (grey color representing
bare or close-to-bare ground conditions). Within four years, the areas
quickly recovered through cultivation of rubber trees as evidenced in
the 2011 image. Both a and c represented part of rubber plantations.
For plot c, the proposed and the classic image analysis generated similar
NDVI change trajectories. As for plot a, the pixel-based analysis resulted
in three low NDVI values from 2004, 2007 and 2011, challenging the
identification of the real starting year of rubber tree cultivation. In
contrast, the pixel/object-based approach resulted in only one valley,
and NDVI showed a steadily increasing trajectory after 2007 (Fig. 6). As
argued by Dong et al. (2012) and Li and Fox (2012), the spectral
characteristics of open-canopy, young rubber stands are likely affected
by the noise from background land cover of bare soil or vegetation. Our
assessment indicated the benefits of accommodating the neighborhood
spectral features (using objects) for mitigating the noise effect. Such
benefits also applied to non-rubber stands. For instance, plot b (Fig. 6)
was not in a rubber plantation. The neighborhood was covered by
sparsely distributed vegetation causing high dynamics of NDVI across
the area. The pixel-based analysis produced a strong NDVI upward

trend from 2009 to 2015 (blue color), similar to a rubber tree growth
pattern. When the neighborhood (contextual) information was in-
tegrated, the NDVI trajectory (orange color) had a gentle gradient of
slope, reflecting the actual non-rubber land condition.

3.2. Parameter evaluation of tree growth model

The optimal value range for model parameters a and b was calcu-
lated using the training samples. For our study area, the maximum,
minimum, average and standard deviation were found to be 0.34, 0.18,
0.23 and 0.03 for a, and 0.38, 0.21, 0.31 and 0.05 for b, respectively
(Table 1). Parameter a reflected the annual rate of tree growth, and
showed higher values than those from natural forests and many other
croplands. The annual time series analysis addressed the challenge of
rubber tree extraction from single-date imagery, where all plants could
exhibit similar NDVI values. Although we employed dry-season (March
to April) Landsat imagery, which led us to expect higher rubber NDVI
values from the rapid foliation of rubber trees, it was still inevitable to
discover rubber and non-rubber plants with similar spectral signatures.
The tree growth rates (values of a) were observed to range from 0.18 to
0.34, possibly caused by the dynamic microclimates in this mountai-
nous region, with elevation changing from 267 to 2555m. Parameter b
was equivalent to the background NDVI at the tree age of one. Its values
were a reasonable representation of bare ground. The variation in b was
possibly the result of mixed spectral signatures from soil, grass, shrub
and/or crops. In addition, all the rubber tree growth models had rela-
tively strong performance fitting the annual NDVI observations, with R2

ranging from 0.62 to 0.94 (Table 1).
To evaluate the model’s sensitivity to the uncertainties in NDVI

observations, we randomly added errors of 5%, 10%, 15%, 20%, 25%,

Fig. 6. Comparison of NDVI trajectories extracted from the proposed pixel/object-based versus classic pixel-based approach for three sample locations (a), (b) and (c).
The three Landsat images show land cover at three sample time steps 2002, 2007 and 2011.

Table 1
The estimates of tree growth model parameters a and b, and R-squared values.

Model Maximum Minimum Average Standard deviation

Parameter a 0.34 0.18 0.23 0.03
Parameter b 0.38 0.21 0.31 0.05
R-squared 0.94 0.62 0.80 0.09

G. Chen et al.



and 30% to an NDVI time series simulated with the average a (0.23)
and b (0.31). For each error level (e.g., 5%), individual NDVI ob-
servations were randomly selected to incorporate a positive or negative
change (e.g., +5% or −5%). To ensure a consistent comparison of
model performance across error levels, NDVI values from the same
years were added in the same direction (positive or negative) of errors.
Fig. 7 shows the modeling results using a 10-year time window. Other
time windows are not displayed because they demonstrated similar
patterns as those generated for the 10-year window. Specifically, the
model goodness-of-fit (R2) decreased remarkably in tandem with the
increase of error. However, model parameters remained relatively
stable (a: 0.17–0.23; b: 0.29–0.38), indicating a high resistance to NDVI
errors. It is therefore meaningful and relatively robust relying on model
parameters a and b to detect rubber plantations.

In tropical and subtropical regions, remote sensing data quality is
often affected by cloud cover or fog inundation causing unexpected low
NDVI values in the time series. Such low values (NDVI < 0.4) are si-
milar to those collected from the starting year of rubber tree cultivation.
Particularly if this ‘spurious’ candidate occurs in the middle of a rubber
NDVI time series, the actual starting year (defining rubber tree age)
may not be identified. Here, we based our tests on a rubber NDVI time
series simulated with the average a and b values 0.23 and 0.31 as de-
rived from the training samples (Table 1). We purposely reduced NDVI
values to 0.2 at ages 2, 4, 6 and 8, respectively. Then, we fitted the tree
growth model within all the possible time windows, treating 0.2 as the
first year NDVI observation (Fig. 8). Results showed that the variation
(standard deviation) of parameter a was relatively large, ranging from
0.05 to 0.09, which were higher than the parameter standard deviation
values used in this study (Table 1). In out tests, higher variation oc-
curred when the spurious candidate was closer to the stage of higher
tree maturity (a1, a2 and a3 in Fig. 8). In case a4 (Fig. 8), only one time
window could be evaluated. a was found to be large (0.62), which was
almost twice of the maximum value of a from rubber stand training
samples (0.34; Table 1), was apparently outside of the parameter range

as defined by this study (Table 1). Hence, the model showed the ca-
pacity to identify spurious candidates that may occur at various time
steps in a tree growth NDVI trajectory.

3.3. Age estimation of rubber plantations

This study produced two types of maps, including the spatial dis-
tribution of rubber plantations and the associated tree age estimates.
Overall, the proposed mapping approach achieved an accuracy of
87.00% for identifying rubber plantations, with kappa statistic of 0.75.
Rubber and non-rubber land cover both achieved over 80% user's and
producer's accuracies (Table 2), which had comparable or slightly lower
performance as those reported in previous rubber tree mapping projects
using Landsat imagery (e.g., Li and Fox, 2011; Dong et al., 2013; Kou
et al., 2015).

On average, the age of rubber stands was estimated with an error
(RMSE) of 1.53 years. Fig. 9 shows a comparison of estimated versus
reference rubber tree age, where larger bubbles represent more vali-
dation samples overlaid on the corresponding spots. The errors did not
show noticeable biases at specific ages, including the pre-mature tree
growing stage (e.g., age< 7 years old) that is usually challenging to
estimate (Chen et al., 2012; Dong et al., 2013). Most of the errors oc-
curred within a two-year range, possibly caused by inaccurate estima-
tion of the starting year of rubber tree cultivation. Specifically, under-
estimation was possibly resulting from the small canopy cover of young
rubber trees in the area, where the spectral reflectance was dominated
by bare soil causing NDVI values to be lower than 0.4. Overestimation
was partially explained by the outcome of dense grass/shrubs or non-
rubber crops covering the land prior to rubber tree cultivation making
NDVI values higher than 0.4. While errors remained, they were rela-
tively small and consistent across young, middle-age, and mature
rubber plantations. To the best of our knowledge, such level of accuracy
was rarely achieved in earlier studies. For example, Chen et al. (2012)
applied Landsat TM data to estimate the stand age of rubber plantations

Fig. 7. The performance of tree growth model with a series of errors added to all the observations (error levels: 5%, 10%, 15%, 20%, 25%, and 30%).
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in Hainan, China. They compared different variable inputs (e.g., spec-
tral signature, vegetation indices and tasseled cap components) using
regression techniques. The best model achieved an error of 5.96 years.
Using the same type Landsat TM data, Suratman et al. (2004) achieved
estimation errors from 6.4 to 8.2 years. In a Yunan study site that is
close to our mapping area, Kou et al. (2015) integrated both Landsat
time series and L-band PLASAR images to estimate rubber stand age.
Instead of treating age as a continuous variable, they categorized age

into three groups (≤5, 6–10,> 10 years), which achieved accuracies
between 80% and 90%. Similarly, Li and Fox (2012) applied MODIS
time series to extract two groups of rubber plantations: young
(< 4 years) and mature rubber trees (≥4 years). While the results de-
monstrated accuracies over 97%, both the age classes and map spatial
resolution (250m) were coarse.

We generated a rubber plantation age map for the entire study area
(Fig. 10). The final year of the evaluated NDVI time series 2015 was
treated as the current date. Because our approach required at least three
years of NDVI observations to fit the tree growth model, the youngest
plantations were estimated at the age of 3 years old. The oldest were
15 years old, as we did not use NDVI observations prior to 2001. In
general, the age map confirmed the reported intensive rubber cultiva-
tion activities in China, which were initiated earlier than its neighbors
Myanmar and Laos (Smajgl et al., 2015; Liu et al., 2016). A spatial
expansion pattern was clearly observed in a border area between China
and Myanmar, where young rubber trees (cyan-blue) were recently
planted adjacent to the more mature plantations (red-yellow) located in
the north (Fig. 10). Our findings confirmed the recent political and
economic reforms in Myanmar and Laos, aiming to attract foreign in-
vestors (e.g., China and Thailand) through allocating land concessions
(Woods, 2012; Ziegler et al., 2009; Liu et al., 2016). While young

Fig. 8. The capacity of tree growth modeling to capture spurious initial year candidates (with low NDVI values) occurring at various time steps.

Table 2
Confusion matrix and kappa statistic of the rubber mapping result.

User class Reference class Total User's
accuracy

Rubber
plantation

Non-rubber
land cover

Rubber plantation 40 6 46 86.96%
Non-rubber land

cover
7 47 54 87.04%

Total 47 53 100
Producer's accuracy 85.11% 88.68%

Overall accuracy= 87.00%; Kappa statistic= 0.75.
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plantations were also discovered in Laos, they were found to follow a
more scattered distribution pattern than in the other two nations,
possibly the compound effects of natural environment, politics, and
socioeconomics. In many areas, we further discovered a spatial pattern
of dense rubber plantations in urban peripheries (e.g., the bottom-left
region in Fig. 10), which was likely a strategy for cost-effective

transportation and logistics since rubber tapping is labor intensive
(Mann, 2009).

The global rubber market prices rose significantly in the 2000s
jumping from less than 25 to over 280 cents per pound (IndexMundi,
2017), which has been the driving force behind the rapid expansion of
rubber plantations in mainland Southeast Asia (Li and Fox, 2012). It
was also evidenced in our study area, where the estimated rubber tree
expansion followed the similar pattern of rubber market price change
(Fig. 11). A time-lag effect was also observed, where the pace of rubber
expansion seemed to reflect the change in rubber market price a couple
of years behind.

4. Conclusions

This study developed an integrated pixel- and object-based tree
growth model using Landsat annual time series to estimate the stand
age of rubber plantations. The performance of the model was evaluated
in a 21,115 km2 tri-border region along the junction of China, Myanmar
and Laos from three aspects. First, the integration of pixel- and object-
based image analysis showed superior performance in building yearly
NDVI time series that resulted in apparent tree growth trajectories.
Compared to the classic pixel-based approach, our method took into
consideration the contextual information in rubber tree stands, redu-
cing spectral noise from background soil and vegetation. Second, model
sensitivity analysis was performed using real NDVI observations and
through simulations. We found that model parameters (a and b in Eq.
(1) remained relatively stable during the analysis, making stand age
estimation robust to outliers. The application of the proposed model to
the entire study area resulted in an average age estimation error of
1.53 years. Third, our model demonstrated consistent performance
across young, middle-age, and mature rubber plantations. While de-
veloped and evaluated in one study area, the model proved the feasi-
bility of integrating image time series and tree growth modeling to

Fig. 9. Estimated versus reference age, where larger bubbles represent more
samples overlaid on the corresponding spots.

Fig. 10. Age estimation of rubber plantations in a tri-border region along the junction of China, Myanmar and Laos. White lines represent the country borders.
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estimate the stand age of a dominant plantation crop of rubber. In re-
gions covered by mixed plant species that may show similar tree growth
trajectories (e.g., oil palm versus rubber trees), age estimation may be
facilitated by extending our model to incorporate fine-scale phenolo-
gical variation from multi-source time series (e.g., Sentinel-2 and
ASTER).

Acknowledgements

This research was supported by the University of North Carolina at
Charlotte through a Junior Faculty Development Award to Dr. Gang
Chen.

References

Alton, C., Bluhm, D., Sannanikone, S., 2005. Para Rubber in Northern Laos: The Case of
Luangnamth. Lao-German Program, Rural Development in Mountainous Areas of
Northern Laos, Vientiane.

Blagodatsky, S., Xu, J., Cadisch, G., 2016. Carbon balance of rubber (Hevea brasiliensis)
plantations: A review of uncertainties at plot, landscape and production level. Agric.
Ecosyst. Environ. 221, 8–19.

Blaschke, T., Hay, G.J., Kelly, M., et al., 2014. Geographic Object-Based Image Analysis –
Towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 87, 180–191.

Chen, B., Cao, J., Wang, J., Wu, Z., Tao, Z., Chen, J., Yang, C., Xie, G., 2012. Estimation of
rubber stand age in typhoon and chilling injury afflicted area with Landsat TM data:
A case study in Hainan Island, China. For. Ecol. Manage. 274, 222–230.

Chen, G., Metz, M.R., Rizzo, D.M., Dillon, W.W., Meentemeyer, R.K., 2015. Object-based
assessment of burn severity in diseased forests using high-spatial and high-spectral
resolution MASTER airborne imagery. ISPRS J. Photogramm. Remote Sens. 102,
38–47.

Chen, G., Hay, G.J., Castilla, G., St-Onge, B., Powers, R., 2011. A multiscale geographic
object-based image analysis (GEOBIA) to estimate lidar-measured forest canopy
height using Quickbird imagery. Int. J. Geograph. Informat. Sci. 25, 877–893.

Chen, G., Weng, Q., 2018. Special issue: Remote sensing of our changing landscapes with
Geographic Object-based Image Analysis (GEOBIA). GISci. Remote Sens. 55,
155–158.

Chen, G., Weng, Q., Hay, G.J., He, Y., 2018. Geographic Object-based Image Analysis
(GEOBIA): Emerging trends and future opportunities. GISci. Remote Sens. 55,
159–182.

Chen, G., Zhao, K., Powers, R.P., 2014a. Assessment of the image misregistration effects
on object-based change detection. ISPRS J. Photogramm. Remote Sens. 87, 19–27.

Chen, J., Ban, Y., Li, S., 2014b. China: Open access to Earth land-cover map. Nature 514,
434–444.

Drǎguţ, L., Tiede, D., Levick, S.R., 2010. ESP: a tool to estimate scale parameter for
multiresolution image segmentation of remotely sensed data. Int. J. Geograph.
Informat. Sci. 24, 859–871.

Dong, J., Xiao, X., Chen, B., Torbick, N., Jin, C., Zhang, G., Biradar, C., 2013. Mapping
deciduous rubber plantations through integration of PALSAR and multi-temporal
Landsat imagery. Remote Sens. Environ. 134, 392–402.

Dong, J., Xiao, X., Sheldon, S., Biradar, C., Xie, G., 2012. Mapping tropical forests and

rubber plantations in complex landscapes by integrating PALSAR and MODIS ima-
gery. ISPRS J. Photogramm. Remote Sens. 74, 20–33.

Fox, J., Castella, J., 2013. Expansion of rubber (Hevea brasiliensis) in Mainland Southeast
Asia: what are the prospects for smallholders? J. Peasant Stud. 40, 155–170.

Giambelluca, T.W., Mudd, R.G., Liu, W., et al., 2016. Evapotranspiration of rubber (Hevea
brasiliensis) cultivated at two plantation sites in Southeast Asia. Water Resour. Res.
52, 660–679.

Grogan, K., Pflugmacher, D., Hostert, P., Kennedy, R., Fensholt, R., 2015. Cross-border
forest disturbance and the role of natural rubber in mainland Southeast Asia using
annual Landsat time series. Remote Sens. Environ. 169, 438–453.

IndexMundi, 2017. Rubber Monthly Price. Available online: http://www.indexmundi.
com/commodities/?commodity=rubber.

Kou, W., Xiao, X., Dong, J., Gan, S., Zhai, D., Zhang, G., Qing, Y., Li, L., 2015. Mapping
deciduous rubber plantation areas and stand ages with PALSAR and Landsat images.
Remote Sens. 7, 1048–1073.

Kumagai, T., Mudd, R.G., Giambelluca, T.W., et al., 2015. How do rubber (Hevea brasi-
liensis) plantations behave under seasonal water stress in northeastern Thailand and
central Cambodia? Agric. For. Meteorol. 213, 10–22.

Li, Z., Fox, J.M., 2011. Rubber tree distribution mapping in Northeast Thailand. Int. J.
Geosci. 2, 573–584.

Li, Z., Fox, J.M., 2012. Mapping rubber tree growth in mainland Southeast Asia using
time-series MODIS 250 m NDVI and statistical data. Appl. Geogr. 32, 420–432.

Liu, X., Feng, Z., Jiang, L., Li, P., Liao, C., Yang, Y., You, Z., 2013. Spatial-temporal
analysis of rubber plantation and its relationship with topographical factors in the
border region of China, Laos and Myanmar. Acta Geograph. Sin. 68, 1432–1446.

Liu, X., Jiang, L., Feng, Z., Li, P., 2016. Rubber plantation expansion related land use
change along the Laos-China border region. Sustainability 8, 1011.

Mann, C.C., 2009. Addicted to Rubber. Science 325, 564–566.
Payne, A.R., 1962. The dynamic properties of carbon black-loaded natural rubber vul-

canizates. Part I. J. Appl. Polym. Sci. 6, 57–63.
Simorangkir, D., Moore, P., Haase, N., Ng, G., 2002. Workshop Report: Land clearing on

degraded lands for plantation development. In: A Workshop on Economics of Fire Use
in Agriculture and Forest Plantations (Kuching: Fire Fight South East Asia, IUCN, and
WWF).

Senf, C., Pflugmacher, D., van der Linden, S., Hostert, P., 2013. Mapping rubber plan-
tations and natural forests in Xishuangbanna (Southwest China) using multi-spectral
phenological metrics from MODIS time series. Remote Sens. 5, 2795–2812.

Smajgl, A., Xu, J., Egan, S., Yi, Z.-F., Ward, J., Su, Y., 2015. Assessing the effectiveness of
payments for ecosystem services for diversifying rubber in Yunnan, China. Environ.
Modell. Software 69, 187–195.

Suratman, M.N., Bull, G.Q., Leckie, D.G., Lemay, V.M., Marshall, P.L., Mispan, M.R.,
2004. Prediction models for estimating the area volume, and age of rubber (Hevea
brasiliensis) plantations in Malaysia using Landsat TM data. Int. For. Rev. 6, 1–12.

Trisasongko, B.H., 2017. Mapping stand age of rubber plantation using ALOS-2 polari-
metric SAR data. Eur. J. Remote Sens. 50, 64–76.

Woods, K., 2012. The Political Ecology of Rubber Production in Myanmar: An Overview.
Retrieved from: http://www.burmalibrary.org/docs20/The_Political_Ecology_of_
Rubber_Production_in_Myanmar.pdf.

Xu, J., Grumbine, R., Beckschaefer, P., 2013. Landscape transformation and use of eco-
logical and socioeconomic indicators in Xishuangbanna, Southwest China, Mekong
Region. Ecol. Ind. 36, 749e756.

Yi, Z.-F., Wong, G., Cannon, C.H., Xu, J., Beckschäfer, P., Swetnam, R.D., 2014. Can
carbon-trading schemes help to protect China’s most diverse forest ecosystems? A
case study from Xishuangbanna, Yunnan. Land Use Policy 38, 646–656.

Fig. 11. Comparison between rubber expansions in our study area and global rubber market prices from 2001 to 2013.

G. Chen et al.

http://refhub.elsevier.com/S0924-2716(18)30195-3/h0005
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0005
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0005
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0010
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0010
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0010
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0015
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0015
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0020
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0020
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0020
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0025
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0025
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0025
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0025
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0030
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0030
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0030
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0035
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0035
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0035
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0040
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0040
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0040
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0045
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0045
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0050
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0050
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0055
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0055
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0055
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0060
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0060
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0060
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0065
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0065
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0065
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0070
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0070
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0075
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0075
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0075
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0080
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0080
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0080
http://www.indexmundi.com/commodities/?commodity=rubber
http://www.indexmundi.com/commodities/?commodity=rubber
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0090
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0090
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0090
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0095
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0095
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0095
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0100
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0100
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0105
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0105
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0110
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0110
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0110
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0115
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0115
http://refhub.elsevier.com/S0924-2716(18)30195-3/h9000
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0120
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0120
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0130
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0130
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0130
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0135
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0135
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0135
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0140
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0140
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0140
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0145
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0145
http://www.burmalibrary.org/docs20/The_Political_Ecology_of_Rubber_Production_in_Myanmar.pdf
http://www.burmalibrary.org/docs20/The_Political_Ecology_of_Rubber_Production_in_Myanmar.pdf
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0155
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0155
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0155
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0160
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0160
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0160


Zhai, D.L., Cannon, C.H., Slik, J.W.F., Zhang, C.P., Dai, Z.C., 2012. Rubber and pulp
plantations represent a double threat to Hainan’s natural tropical forests. J. Environ.
Manage. 96, 64–73.

Ziegler, A.D., Fox, J.M., Xu, J., 2009. The rubber juggernaut. Science 324, 1024–1025.

Zomer, R.J., Trabucco, A., Wang, M., Lang, R., Chen, H., Metzger, M.J., Smajgl, A.,
Beckschäfer, P., Xu, J., 2014. Environmental stratification to model climate change
impacts on biodiversity and rubber production in Xishuangbanna, Yunnan, China.
Biol. Conserv. 170, 264–273.

G. Chen et al.

http://refhub.elsevier.com/S0924-2716(18)30195-3/h0165
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0165
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0165
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0170
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0175
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0175
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0175
http://refhub.elsevier.com/S0924-2716(18)30195-3/h0175

	Stand age estimation of rubber (Hevea brasiliensis) plantations using an integrated pixel- and object-based tree growth model and annual Landsat time series
	Introduction
	Methods
	Study area
	Data and pre-processing
	Age estimation of rubber plantations
	Accuracy assessment and model parameter evaluation

	Results and discussion
	NDVI trajectories from pixel/object-based versus classic pixel-based image analysis
	Parameter evaluation of tree growth model
	Age estimation of rubber plantations

	Conclusions
	Acknowledgements
	References




