
Ann Reg Sci
DOI 10.1007/s00168-016-0770-9

SPECIAL ISSUE PAPER

A spatial agent-based model of a congestion game:
evolutionary game theory in space

Sutee Anantsuksomsri1,2 · Nij Tontisirin3

Received: 14 December 2014 / Accepted: 13 May 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract This paper develops a theoretical framework to analyze traffic congestion
from a micro-behavioral foundation perspective. It extends the evolution of an n-
person prisoner’s dilemma within actual geographical space, integrating an agent-
based model with GIS, in conflicting spatial interactions that ultimately lead to the
decline of cooperation. The spatial agent-based model captures the response strategies
of autonomous individuals in a landscape that contextualizes both the natural and the
built environment. The result suggests that the loss of context preservation could lead
to the extinction of cooperation, the opposite of the earlier findings. This theoretical
framework thus serves as a basis for the analysis of collective strategic decisions about
the use of a common resource from a game theoretical perspective.

JEL Classification C63 · C73

1 Introduction

Game theory has long been applied to explain the competitive/cooperative behaviors of
agents based on their strategic interactions. It is the study of how people behave when
considering how others might respond to such behavior. In particular, the paradox
of prisoner’s dilemma has been extensively examined in the field of sociology and
biology as a metaphor of a simple and interesting situation occurring when actions
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of rational individuals pursuing their self-interest lead to a worse outcome as a whole
than if they had cooperated. One classic example of the prisoner’s dilemma is a story of
two arrested suspects. Interrogated separately by the police, each suspect must decide
to confess (and blame the other) or keep silent. If the other confesses, one would be
better off doing the same to avoid harsh punishment. On the other hand, if the other
stays silent, one would be better off confessing to gain favorable treatment.When both
confess, however, the outcome is worse for both than if they both keep silent.

Further, the prisoner’s dilemma also provides a basis for the analysis of the gov-
erning of common-pool resource usage, also known as collective action problems—
situations when no contributions are made by rational self-interested individuals
toward the production of common goods. The common-pool resource includes not
only natural goods but also man-made ones such as irrigation systems, infrastructure,
and road networks, which often face a problem of congestion or overuse when not
well-managed (Ostrom 1990). Ostrom (2000) discusses experimental and empirical
evidence of various design regimes of self-organization and governance to achieve the
benefits of collective action. In her view, contextual factors, such as communication,
trust, governance rules, and social norms, play a key role in promoting or discourag-
ing cooperation, which in turn affects the rate of contribution to public goods. One
important question arises, however, regarding how these contextual factors affect and
maintain cooperation through time. Taking an evolutionary theory approach, Ostorm
argued, is the essential first step to address how context matters.

Most of the literature, nonetheless, often focuses on the evolution of cooperation
of either two- or multiple-player iterated games, without taking into consideration
the contextual space on which agents locate, migrate, and interact [e.g., see Schelling
(1971), Axelrod (1984), Nowak and May (1992), and Cohen et al. (1999)]. Little has
been done to examine how the role of spatial context affects how agents adapt and
interact in a prisoner’s dilemma situation.

This paper aims to fill in this gap. It develops a game theory analytical framework
with visual representation tool. The situation on which the analysis focuses is traffic
congestion in public road networks, which is one of many examples of common-
pool resource problems. The aim is to examine traffic congestion from the micro-
behavioral, game theoretical perspective. The basic concept of the congestion game
(Levinson 2005) serves as a basis for the analysis of strategic interactions among
agents undertaken in this study. As more and more motorists enter the road, they have
direct impacts not only on their own travel time but also on the overall travel time of
all motorists in the system. In addition, local interactions among motorists—such as
overtaking or yielding—are a contributing factor to traffic congestion (Levinson 2005).

However, this study has taken a rather different approach from the congestion game
of Levinson (2005) by adding adaptive behavior and integrating a spatial context,
which is absence in the congestion game, into the model. The model explicitly allows
for vehiclemovement and spatial interactions among agentswithin actual geographical
space in geographical information systems (GIS) as inMalleson (2011) and allows for
agents’ adaptive behavior as in Cohen et al. (1999). This spatial agent-based model
captures the response strategies of autonomous individuals, while GIS contextualizes
both the natural and built environments.
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Fig. 1 Thai perception on traffic problems

To analyze such driving behaviors, we utilize empirical data of Bangkok. With
over 600 new private vehicles on the road daily, Bangkok is one of the most congested
cities in the world. During rush hours, for example, cars on the road in Bangkok
can move merely at 10–15km (6–10 mile) per hour on average and typically can
stand still in the traffic for hours (Office of Transport and Traffic Policy and Planning
2013). With severely congested traffics come stresses and frustration for all motorists;
consequently, confrontation and conflict between them over a precious space on the
road seem unavoidable. According to a 2012 survey “Thais and Traffic Discipline” by
National Institute of Development Administration, illegal overtaking and crosscutting
were found to be the most common problem on the road perceived by Thais, followed
by traffic violation and congestion (see Fig. 1). Clearly, the survey results suggest that
negligent behaviors are recognized among Thais as a major traffic problem.

The focus of this study is an attempt to understand the effect of spatial context on
agent’s cooperative strategies and evaluate the collective impact of such interactions
on congestion in terms of overall travel times. Specifically, while making their trips,
drivers may choose to be responsible (obeying traffic regulations) or negligent (vio-
lating regulations). The main research question is, when agents are freely mobile on
a spatial context so that their interacting neighbors are changing and not constant,
whether cooperative behavior would collectively lead to a better social outcome, i.e.,
less traffic congestion in this analysis.

2 Literature review

2.1 Theoretical and empirical background

2.1.1 Evolutionary prisoner’s dilemma

One aspect of game theory that has been extensively studied in economics and deci-
sion theory is the prisoner’s dilemma. The classic example of the prisoner’s dilemma
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Table 1 Payoff matrix in a
classical prisoner’s dilemma

Player1 Player 2

Cooperate Defect

Cooperate R, R S, T

Defect T, S P, P

comes from a story of two prisoners who face two choices of action: to remain silent
(cooperate,C) or to testify against the other (defect, D).Without knowing each other’s
strategies, a prisoner must decide whether to confess or not to confess. In a generic
form, the value for their judgment is presented in a payoff matrix given in Table 1.

Reward for mutual cooperation (R) is the payoff value if both players cooperate,
while punishment for mutual defection (P) is the value if both players defect. Tempta-
tion to defect (T ) and Sucker’s payoff (S) are payoff values when a player defects alone
and cooperates alone, respectively (Axelrod 1984). According toAxelrod (1984), what
characterize the prisoner’s dilemma are not the absolute values in the payoff matrix,
but rather the rank ordering of the payoffs. These payoff values are such that T > R >

P > S to ensure that a player always has an incentive to defect since the payoff value
is greater than when both cooperate. As a result, regardless of the other’s action, both
prisoners choose to defect, and they are worse off than if they both had cooperated.
This classic example of the prisoner’s dilemma precisely demonstrates how individual
rationality could lead to a worse outcome for both players (Axelrod 1984).

Nonetheless, the shortcomings of the classical prisoner’s dilemma stem from its
simplicity. As discussed in Power (2009), since the prisoner’s dilemma is intended
to study only two-person interactions, it does not represent realistic interactions of
individuals. In addition, it is assumed that there is no communication among players
and no memory of the past interactions, which may lead to collaborative strategies.
Furthermore, as players are assumed to be rational, both players will always choose
to defect to maximize their utilities.

An extension of the classical prisoner’s dilemma presented by Axelrod (1984)
is known as evolutionary prisoner’s dilemma (EPD). Like the classical prisoner’s
dilemma, communications among players are not possible in the EPD. Unlike the
classical prisoner’s dilemma, theEPDallows players to repeatedly choose strategies, or
decision rules, based on their memory of previous encounters. Players’ current actions
are drawn only from their previous interactions with others; in other words, players
are myopic decision makers. Evolutionary prisoner’s dilemma is also applicable to
the interaction with more than two players, as in classical game theory, in order to
examine the collective behavior of social groups since strategies that work well with
individuals may not be appropriate for group decisions.

Similar to the classical prisoner’s dilemma, participants in the EPD play several
consecutive games using the payoff matrix to accumulate points over the game period.
The player with the higher score would be able to influence their opponents to coop-
erate. The payoff matrix for EPD is given in Table 2.

As players are allowed to playmultiple games consecutively, their strategies specify
agents’ actions in any situations that may arise. There are four strategies possible,
namely always cooperating (ALLC), Tit-for-Tat (TFT), Anti-Tit-for-Tat (ATFT), and
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Table 2 Numerical example of
a payoff matrix in evolutionary
prisoner’s dilemma

Player1 Player 2

Cooperate Defect

Cooperate 3, 3 0, 5

Defect 5, 0 1, 1

always defecting (ALLD). ALLC is a strategy where an agent always cooperates,
while an agent choosing an ALLD strategy always defects. Tit-for-Tat is a decision
rule to cooperate in the first move and then do whatever the opponent does in the last
encounter. In other words, if his opponent cooperates in this round, the player will
cooperate in the next round. To put it in layman’s terms, it means “if you are nice to
me this time, I will be nice to you the next time we meet.” Anti-Tit-for-Tat is simply
the opposite of Tit-for-Tat.

Among these four strategies, Tit-for-Tat is found to be the best strategy because it
gives the highest payoffs (Axelrod 1984; Nowak and May 1992; Cohen et al. 1999).
As Power (2009) puts it, “altruism strategies tend to outperform greedy ones over the
long run.”

2.1.2 Evolutionary prisoner’s dilemma in agent-based model

The notion of EPD has been applied tomany studies using agent-basedmodeling [e.g.,
see Bazzan et al. (2002), Cohen et al. (1999) and Gulyás and Płatkowski (2004)]. The
strategies in the EPD can be used to characterize agent relationships in the agent-based
model. Similar to Cohen et al. (1999), the ABM in this study employs a decision rule
for the agent using a “binary” strategy; the strategy may vary according to two factors:
the probability of cooperating after the other cooperates (p) and the probability of
cooperating after the other defects (q). Since on the first play, there is no history
of previous encounters to draw upon, the probability of the agent cooperating in the
first move (denoted as i) also needs to be specified. With these variations in (i , p, q)
combinations, agents are restricted to one of these four types:

• i = p = 1, q = 1: always cooperating (ALLC),
• i = p = 1, q = 0: Tit-for-Tat (TFT),
• i = p = 0, q = 1: Anti-Tit-for-Tat (ATFT), and
• i = p = 0, q = 0: always defecting (ALLD).

At the beginning of the simulation, agents are divided equally into these four types of
strategies. As the simulation proceeds, the fraction of agents in each combination (i , p,
q) varies, but no new combination is created. These binary strategies are deterministic
so that agents can immediately determine the payoffs of any numbers of plays. To
illustrate this, a payoff matrix of four-move games is given in Table 3. The sum of
four-move payoffs is shown in the parenthesis.

Generally, no best strategy exists independently of the strategy used by the other
player. For example, ATFT and ALLDmay do better than TFT and ALLC for player 1
when the opponent’s (player 2’s) strategy is ALLC, but it is the opposite when player
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Table 3 Individual and
four-move payoffs from
interactions of all strategies.
Source: Cohen et al. (1999)

Sum of payoffs is shown in
parenthesis

Player1 Player 2

ALLC TFT ATFT ALLD

ALLC 3333 (12) 3333 (12) 0000 (0) 0000 (0)

TFT 3333 (12) 3333(12) 0153 (9) 0111 (3)

ATFT 5555 (20) 5103 (9) 1313 (8) 1000 (1)

ALLD 5555 (20) 5111 (8) 1555 (16) 1111 (4)

2’s strategy is TFT. In this sense, the variation in an opponent’s strategy that a player
encounters plays a crucial role in the emergence of cooperative regimes. Consequently,
the system dynamics do not depend directly on global proportions of strategy types,
but rather on an agent’s adaptive behavior and on meetings of agents, i.e., who is
interacting with whom, on a local scale.

Cohen et al. (1999) constructed a basic ABMmodel consists of 256 agents who are
categorized equally into four strategies: ALLC, TFT, ATFT, and ALLD. Each agent is
randomly allocated in a 16×16 grid in torus space so that agents of any strategies have
an equal chance of meeting other agents with different strategies. In each iteration,
each agent plays four games with his four adjacent neighbors in the north, east, south,
and west—also known as a von Neumann neighborhood. In addition, the agents are
adaptive, meaning that they change their strategies based on the interactions they have
previously had with other agents. An agent first compares its score to its neighboring
agents’ scores during the current period. If the best score of the neighboring agents is
higher than or equal to the agent’s own score, the agent then adapts to that situation by
imitating the strategy of the neighboring agent with the highest score. When its score
is equal to the best score of its neighbors, the agent simply imitates its own strategy. At
time 100, all agents adopt the Tit-for-Tat strategy, which supports the earlier findings
that Tit-for-Tat is the best among the other three strategies.

2.1.3 Congestion game

Game theory has been applied in examiningmany transportation-related problems, for
example, airport landing fees (Littlechild and Thompson 1977), truck weight limits
(Hilderbrand et al. 1990), yielding and merging behavior (Liu et al. 2007), vehicle
safety (Tay 2002), and traffic congestion (Levinson 2005; Zou and Levinson 2006).
Traffic congestion, in particular, is profoundly a micro-behavioral problem. As Zou
and Levinson (2006) put it, “congestion is a phenomena caused bymultiple interacting
individuals seeking to use a temporarily scarce resource in a short period of time.” As
such, congestion emerges as a result of the interaction ofmultiple players—ormultiple
vehicles—on the road.

Levinson (2005) sets up the game theory model for a congestion game using a
simple two-player (or vehicle) interaction. A decision made by one traveler—such
as departure time or vehicle maneuver—affects the journey delay and arrival times
experienced by other travelers. The model assumes that players are instrumentally
rational and have perfect knowledge of the game. It is also assumed that there is
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Table 4 Payoff matrix of a two-player congestion game. Source: Levinson (2005)

Player 1 Player 2

Early On time Late

Early 0.5 ∗ (E + D),
0.5∗(E+D)

E, 0 E, L

On time 0, E 0.5 ∗ (L + D),
0.5 ∗ (L + D)

0, L

Late L , E L , 0 L+ 0.5∗ (L+ D),
L+0.5∗(L+D)

common knowledge of rationality as well as consistent alignment of beliefs. A payoff
matrix in the two-player congestion game represents costs by incorporating a penalty
for early arrival (E), late arrival (L), and journey delay (D). Hence, both players try to
minimize the costs for each scenario. Each vehicle has three options: to depart early,
to depart on time, or to depart late. If both players depart at the same time, both players
have an equal chance of suffering from the incurred penalty costs, and there will be
congestion. For example, if both vehicles depart early, there will be only one that
arrives early while the other will suffer journey delay. Thus, each player has a 50%
chance of being early or suffering journey delay [see Levinson (2005)]. The payoff
matrix is described in Table 4. As can be seen, the equilibrium solution depends on the
values of E, L, and D. Several plausible solutions are discussed in Levinson (2005).

The concept of the construction of the payoff matrix is simple, yet powerful, in
describing driving behavior and congestion from the micro-behavioral perspective.
Nonetheless, it still lacks a sense of space and mobility dimensions. This analysis,
therefore, adopts the concept of the two-player congestion game within the framework
of the evolutionary prisoner’s dilemma. Space and mobility, which play an important
role in the emergence of congestion, are introduced and incorporated in the analysis.

2.1.4 Importance of spatial context

Physical space plays an important role in the emergence of urban phenomena from
individual choices. For example, proximity to other neighboring agents in Schelling’s
segregation model is one of the contributing factors to urban segregation phenomena
(Schelling 1971) and to the emergence of power laws in a city system (Mansury and
Gulyas 2007). In Computer Prisoner’s Dilemma Tournaments, Axelrod (1984) shows
that spatial structure, in addition to evolutionary strategies, is an important factor in
creating cooperation. The seminal work of Nowak and May (1992) examines two
simple kinds of player, those who always cooperate and those who always defect,
in iterated prisoner’s dilemmas with the presence of a two-dimensional spatial array.
They found that spatial context indeed plays an important role in agents’ interactions.

Cohen et al. (1999) emphasize how context preservation can promote cooper-
ation among adaptive agents in iterated prisoner’s dilemma games. The relatively
stable “neighborhood” of the agents over time, known as context preservation, enor-
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mously contributes to the emergence and maintenance of mutual cooperation. Context
preservation also tends to increase local influencing (i.e., frequently interacted players
become similar over time) and homophily (i.e., tendency to interact among the same
players). Context preservation may refer to an agent’s neighborhood. The more likely
that the agents will meet again, the more they cooperate. Thus, the environment in
which agents interact is one of the key factors in the emergence of cooperation. Power
(2009) presents a spatial agent-based model of an N-person prisoner’s dilemma to
examine the cooperation among a socio-geographic community. The results show that
agent mobility and context preservation can lead to different effects on the evolution
of cooperative behavior.

3 Model description

3.1 Overview

3.1.1 Purpose

The spatialABMpresented in this paper provides amicro-foundation analytical frame-
work for behavioral interactions of adaptive agents (motorists) in geographical spaces
where they locate, migrate, and interact. By integrating strategic behavior based on
congestion game and evolutionary prisoner’s dilemma (EPD) into the spatial context,
this spatial ABM serves as a platform to analyze an emergence of traffic congestion
as a result of on-the-road interactions of motorists, using the data of Bangkok. Unlike
previous studies ofEPD, this study employs amore realistic spatial geographic space—
one where agents locate and interact—in a GIS environment. Agents are mobile and
can move along the road network. The model also provides visual representation tools
of EPD.

3.1.2 Entities and state variables

The model comprises two major types of objects (known as “contexts”): city context
and agent context, with their spatial locations contained in a GIS projection. The
city context represents physical geographies—or built environments—and consists
of three sub-contexts: building, road, and junction contexts, the latter two of which
form a road network. The building context contains building footprints, representing
a spatial extent of the building configuration. The other component of the model, the
agent context, contains autonomous and self-interested agents whose spatial locations
are stored in a GIS projection. The model structure diagram is shown in Fig. 2.

The city context contextualizes the actual physical surroundings—within which
agents move and interact—in GIS; it is comprised of road, junction, and building
contexts (See Fig. 2). Roads and buildings, which are the two GIS inputs, are prepared
in ArcGIS. The road shapefile is a simple representation of road centerline, and the
building shapefile is a polygon shapefile of building parameters. The road geography
is stored in the road context, while the building geography is contained in the building
context. The last component of the city context is the junction context. It contains
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Bangkok 
Agent-based 

Model

City Context

Road Context

Road NetworkRoad Geography Building Geography Agent GeographyJunction Geography

Building Context Simple AgentJunction Context

Agent Context

Fig. 2 Structure of a spatial agent-based model of Bangkok

road junction (nodes) and a road network. The junction context is constructed based
on road geography from the input GIS road shapefile.

The agent context contains all agents, which are adaptive and autonomous, playing
EPD to each other. Each agent is an object in the agent context, representing a motorist
on the road who can decide to react and adapt. The geographical locations of all agents
are also acquired fromaGIS input, as in the city context, in the formof a point shapefile.

State variable includes the agents’ strategy, cumulative payoff, total travel time to
destination, and total number of trips. The study area in this study is the city center
of Bangkok, Thailand. The GIS layers consist of roads, building footprints, and point
locations of agents (or motorists in this case), which will be described in the following
section. Although Bangkok is used in this study, the model platform is flexible and
modifiable to incorporate different study areas—with different GIS inputs. One time
step equals one second in real time.

3.1.3 Process overview and scheduling

The key element in this spatial agent-based model of a congestion game is the inter-
action of neighboring motorists on the road. In each simulation step, each motorist
moves from an origin to a destination on an input road network. While traveling, each
motorist can decide to drive responsibly or negligently in his interactions by playing
EPD games with his neighboring motorists to accumulate his travel cost. It is assumed
that allmotorists have perfect information; therefore, the payoff value, representing the
travel cost, of the EPD game is deterministic. After a destination is reached, a motorist
will continue traveling to a new randomly selected destination until the simulation
terminates. Travel demand is assumed to be unknown.

3.2 Design concepts

3.2.1 Individual decision-making

In a spatial agent-basedmodel of a congestion game, an agent—representing amotorist
on the road—makes a decision about their driving behavior. In the simplest form, play-
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Table 5 Payoff matrix of a
congestion game

Player1 Player 2

Cooperate Defect

Cooperate F1, F1 F2, F3
Defect F3, F2 F4, F4

ersmay choose to cooperate (e.g., driving responsibly and following traffic regulations)
or to defect (such as violating traffic regulations or driving negligently).

The construction of a payoff matrix adopts the concept of the congestion game of
Levinson (2005). Each player’s decision takes into account the penalty—measured in
terms of the value of time loss—of journey delay (Cd), being involved in an accident
(Ca), and being fined by traffic police (C f ). Table 5 shows the payoff matrix of the
congestion game.When both players choose to cooperate, each encounter has an equal
chance of incurring costs of journey delay. If a player chooses to cooperate while the
other defects, this player has to bear the cost of journey delay aswell as the cost of some
probability of having an accident. The other player that defects not only bears the cost
of potential accidents but also has the possibility of being fined by the traffic police
because of its reckless driving behaviors, for example, a moving traffic violation. If
both players defect, each will bear all costs of journey delay, accidents, and being
fined. The elements in the payoff matrix are defined as follows:

F1 = 0.5∗Cd , (1)

F2 = Cd +
(
Pa∗Ca

)
, (2)

F3 =
(
Pa∗Ca

)
+

(
Pf

∗C f
)
, (3)

F4 =
(
0.5∗Cd

)
+

(
Pa∗Ca

)
+

(
Pf

∗C f
)
, (4)

where

Cd denotes costs of journey delay = 0.0083 THB/s,
Ca denotes costs of accident = 770 THB/case,
C f denotes traffic violation fines = 400 THB,
Pa denotes the probability that an accident can occur in each turn = 0.00000004,
and
Pf denotes the probability of receiving a traffic violation fine in each turn =
0.00000012.

The numerical values in the payoff matrix are derived from stylized facts, statistics
reports, and previous studies related to transportation in Bangkok. As agents make
decisions in every encounter, these values are normalized in a monetary value per sec-
ond of time. The cost of journey delay per second (Cd) is estimated to be 0.0083 Thai
Baht (THB) or around US $0.0003. It is derived from the study of Dissanayake and
Morikawa (2010) that estimates the hourly value of time of Bangkok commuters to be
30 THB, which results in a value of 0.0083 THB per second. The cost of an accident is
calculated from a recent statistical report from the Royal Thai Police Central Informa-
tion Technology Center. In 2011, there were 4669 traffic accident cases reported to the
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Table 6 Numerical payoff matrix of a congestion game

Player1 Player 2

Cooperate Defect

Cooperate −0.00415, −0.00415 −0.00830, −0.00008

Defect −0.00008,−0.00830 −0.00423, −0.00423

police, and it was estimated that the damage from these accidents was 3,598,000 THB,
or around 770 THB (US $25) per case (Ca). An average fine for a traffic violation
in Bangkok is 400 THB, thus being the value of C f . The probability of an accident
occurring (Pa) is calculated from the ratio of the number of cars involved in accidents
to the total number of cars registered in Bangkok in 2011. Finally, the probability
of receiving a traffic violation fine (Pf ) is derived from the ratio of the number of
cases where fines have been issued (Dailynews 2012) to the total number of vehicles
registered in Bangkok. The values in the payoff matrix from these stylized facts are
given in Table 6. Since the payoff represents costs, the values are shown in negative
numbers. As can be seen, the matrix is one example of the prisoner’s dilemma; each
agent individually has an incentive to defect, but it is more socially optimal if both
cooperate.

3.2.2 Individual movement

Figure 3 illustrates the overall flow of agents’ movements in a simulation. At the
beginning of each trip, each agent chooses a random destination, which is one of the
buildings in the building context. Once a destination is selected, the route is formed,
and the agent travels along the road to its destination. In a simulation, the agents’
movements are restricted to the roads only.

As described by Malleson (2011), the algorithm of an agent’s movement along the
road involves a few steps. Suppose an agent starts at his home, and a randomdestination
is selected. The first step is to identify the nearest junctions of an agent’s origin position
and destination. When these junctions are identified, a route is determined. To form a
route between the origin and destination locations, a list of edges in the road network
projection is generated using Dijkstra’s shortest path algorithm. Once the route has
been formed, a list of coordinates through which the agent must pass when traveling
from the origin to the destination is also created. To generate a list of coordinates, all
the edges that make up the route are iterated to find their corresponding road objects
in the road geography, and eventually all the coordinates which form the geometry
of these road objects are added to the list. As such, the agent’s movement from its
origin to its destination is restricted only to roads. After the list of coordinates along
the route is generated, in each turn the agent can only move a certain distance from
its current position. If the agent is currently not on a road segment, for example, the
agent may be inside a building, so the agent is first moved to the nearest junctions (or
nodes). Themaximumdistance of agentmovement in each tick is exogenously defined.
Virtually, this defines the “speed” of an agent’s movement. Currently, the maximum
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Fig. 3 Flow diagram of agent-based model of Bangkok

movement distance allowed in each tick is set at 5m, or around 16 feet. Thus, if one
tick is equivalent to one second in real time, an agent’s speed is 18 km per h, which
is an approximate average speed in Bangkok city center (Royal Thai Police Central
Information Technology Center 2011). If an agent cannot move from one coordinate
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to the next in one turn (in other words, the distance between the two coordinates is
greater than the maximum allowable travel distance), it will move toward the next
coordinate by the defined maximum distance in one turn and continue the remaining
distance toward the next coordinate in the following turn.

In addition, before beginning to move in each turn, each agent performs several
checks, including determining the number of neighboring players and their locations.
As shown in Fig. 3, decisions and actions shown on a gray background are decisions
needing to be determined prior to moving in each turn. If an agent has at least one
neighbor, it will interact with its neighbors, which is described in the following section.
If not, the agent performs further checks, which are special movement features added
in the model. For example, to avoid a collision, an agent may temporarily halt their
traveling if they have a vehicle in front of them. At an intersection, an agent also
temporarily stops moving when a traffic light is red and continues traveling when a
traffic light turns green. For simplicity in programming, the traffic light control at an
intersection allows vehicles to move from only one direction at a time. For instance, at
an intersection, only vehicles from the east may travel while vehicles from the north,
west, and south have to stop. The model also allows for the possibility of having an
accident, depending on the strategy of an agent. Agents choosing the ALLD strategy
have a higher probability of having an accident than agents choosing other strategies.
If an agent is involved in an accident, it temporarily stops moving.

3.2.3 Individual sensing

Previous works have shown that context preservation is an important factor for the
emergence of cooperation. Thus the agents’ neighborhood is a crucial component for
such cooperation since local influence—or “the mix of encounter”—can largely affect
and sustain the cooperation (Cohen et al. 1999). The neighborhood of an agent, in
fact, can be defined in many different ways, depending on the environmental context

Fig. 4 Comparison of an agent’s neighborhood in a grid context (left) and in a geographic information
systems (right)
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employed in the model. If an agent is located in a two-dimensional grid system (see
Fig. 4a), its surrounding neighbors can be comprised of four cells (von Neumann) or
eight cells (Moore).

Alternatively, an agent’s interacting neighbors can be defined based on their prox-
imity to other agents. If the distance between two agents is less than some threshold
distance set by the analyst, these two agents are considered to be neighbors. The most
commonly defined distance is straight-line or Euclidian distance. Using GIS layers for
geographic locations of agents, an interaction neighborhood can be defined as agents
situated within a specified radius buffer from Agent A (see Fig. 4b). Agents that are
located outside of the buffered area are not considered the neighbor of Agent A and
thus will not interact with Agent A. The major difference between grid space and GIS
space is the variation in the number of agent’s neighbors. While an agent in the grid
may have a constant number of neighbors, four neighbors in this example, the neigh-
bors of an agent in GIS space may vary, depending on an agent’s and its neighboring
agents’ current positions.

In this spatial agent-based model of a congestion game, agents are said to be neigh-
bors if they are located within a certain Euclidian distance from each other. That
distance is currently set to be 5 m, which is approximately the length of a car. The
number of neighbors of an agent may vary because of the movement of the agent. In
every turn, as an agent moves along the road, its neighbor would change, depending
on the agent’s current position. It is also possible that at some turns, an agent may not
have a neighbor at all. An agent itself is always included as its neighbor. Therefore,
in every turn, an agent will always have at least one neighbor, that is, the agent itself.
This variation in the number of neighbors certainly affects the interaction patterns of
the agent, allowing for the analysis of the effect of spatial context on evolutionary
behaviors of agents.

3.2.4 Interaction

After its neighbors are determined, an agent interacts with its neighbors to accumulate
payoff—representing travel costs. In each turn, an agent will play N number of EPD
games with its neighbor, where N denotes the number of neighbors. Since every agent
is assumed to be rational and know perfectly the value in the payoff matrix, the payoff
is deterministic. How the agent interacts with its neighbors depends primarily on its
strategy. Following Cohen et al. (1999), this study employs a decision rule for the
agent using a “binary” strategy as discussed in Sect. 2.1.2. As such, the strategy is
deterministic. There are four strategies: ALLC, TFT, ATFT, and ALLD.

Once having interacted with its neighbors, the agent adapts to the best strategy from
the previous encounter. To adapt to the best strategy, an agent first compares its score to
its neighboring agents’ scores. If the best score of the neighboring agents is higher than
or equal to the agent’s score, the agent then imitates the strategy of the neighboring
agent with the best score. If the agent’s score is the best among neighboring agents,
the agent then imitates its own strategy. In this sense, suppose T denotes a time period
(or the number of turns) in the simulation. The agent’s strategy is driven by the agent’s
memories and lessons learnt from the previous encounters in period T − 1.
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3.3 Details

3.3.1 Implementation details

The framework of this spatial agent-based model of a congestion game is based on
the RepastCity2 model developed by Malleson (2011). The model is built using the
Repast Simphony modeling system 2.0 beta software developed by Argonne National
Laboratory (Repast Organization for Architecture and Design 2008, 2010).

3.3.2 Initialization

In period 0, the population is split with equal probability into four types of strategies:
ALLC, TFT, ATFT, and ALLD. The initial location of each individual agent is at the
center of a building in the city context. In every period afterward, each individual agent
randomly chooses a building and route of travel to that destination.While traveling, an
agent encounters other individuals, which are considered to be the agent’s neighbors if
located within a certain distance. Once the agent’s neighbors are determined, the agent
playsmultiple EPD gameswith its neighbors and accumulates the payoff values. Since
the agent is mobile, it is possible that the agent may have no neighbors at a certain
point in time. If the agent has no neighbors, the agent will not play any games in that
turn.

During the model initialization process, spatial extent is constructed from the input
GIS shapefiles, and topological relationships of junctions and roads are built into a
road network. Through iterating all road objects, junctions are created where two
roads meet, and these junctions are added to the junction context and the road network
projection. Meanwhile, the edge (or arc) connecting two nodes is created and added
to the road network. The relationship of road objects in the road geography and road
edges in the road network projections is preserved, linking the GIS projection to the
network projection. By default, the map coordinate system of input GIS layers must
be the geographic coordinate system. Thus, the coordinate system of all input GIS
shapefiles in the model is World Geodetic System (WGS) 1984.

The area of the city context encompasses around 4 squaremiles, or around 10 square
kilometers, in Pathumwan district. As illustrated in Fig. 5, roads are shown in black
and buildings are in gray. The study area covers one of the busiest areas in Bangkok,
with several intersections and commercial/office buildings. For simplicity, all roads in
the city context represent two-way roads with one lane in each direction.

3.3.3 Input data

GIS input data—both building and road shapefiles—that form the spatial extent of
the model are created by the authors by tracing them from a current Google Map. To
construct a payoff matrix of the congestion game, the cost of an accident is calcu-
lated from a recent statistical report from the Royal Thai Police Central Information
Technology Center.
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Fig. 5 Spatial extent of city context

4 Results

4.1 Experiment settings

To examine congestion as a consequence of motorists’ interactions, the analysis con-
sists of simulationswith three different initial conditions: (1)when allmotorists always
cooperate (ALLC), (2) when all always defect (ALLD), and (3) when all four strate-
gies are mixed. The case when all agents always cooperate serves as a baseline when
all motorists behave nicely, while the condition when all always defect serves as an
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Fig. 6 Simulation interface at tick 0 (left) and 50 (right)

extreme case when everyone behaves badly. The hypothesis tested here is that when
an increasing number of motorists behave recklessly (i.e., choose to defect) to save
travel time, it inadvertently creates more congestion. The model simulation allows for
testing such hypotheses. Congestion is evaluated using average travel time in every
50-tick interval. For each initial condition, a simulation is run for 5000 ticks. The travel
time in milliseconds is reported and recorded when agents reach their destinations and
complete a trip.

In the simulation graphic interface, each type of agent is symbolized differently
in terms of both colors and shapes. Agents with ALLC, TFT, ATFT, and ALLD are
shown in a blue circle, green cross, red square, and yellow triangle, respectively. If
an agent changes its strategy, its graphic representation also changes. Traffic lights
at intersections are shown in red and green circles for red and green lights. Figure 6
illustrates the simulation interface at times 0 and 50 for the mixed-strategy initial
condition. As can be seen, all agents start at the internal point inside buildings and
gradually move toward the nearest road and continue moving on the road afterward.

4.2 Observation on micro-foundation

Figure 7 illustrates the average travel time for each initial condition. As can be seen,
although the results are based on one simulation for each condition, a condition with
all ALLD agents overall has the highest average travel time. On average, the travel
time in the scenario with ALLD agents is 102,629.72ms, while the travel times of
ALLC and mixed strategies are 79,921.02 and 85,469.56ms, respectively. It suggests
that when pursuing his own interest, an agent who always defects makes the society as
a whole worse off. By driving negligently to avoid traffic, agents paradoxically create
more congestion, and this congestion emerges as a result of the spatial interactions of
all motorists.
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Fig. 7 Average travel time with three different initial conditions

Fig. 8 Agents’ strategies in mixed-strategy initial condition

Additionally, the effect of context preservation can be analyzed in the third initial
condition (when all four strategies aremixed). As shown in Fig. 8, the agent’s strategies
are first dominated byALLCbut later converge toATFT. The result suggests thatATFT
seems to be the best strategy when an agent’s spatial context is not preserved. As
time progresses, when an agent moves, his neighbors change. As a result, an agent’s
context is not preserved, and an agent is less likely to cooperate. This profoundly
explains motorists’ behavior on the road. As motorists are less likely to sustain the
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Fig. 9 Negligent driving behavior in Bangkok

same interacting neighbors for a long period of time, they are more likely to behave
negligently and do not cooperate. The result supports the earlier findings of Cohen
et al. (1999) and Power (2009) that agent mobility and context preservation can lead
to different effects on the evolution of cooperative behavior.

This emerged congestion is common in Bangkok traffic. Figure 9 illustrates some
examples of these negligent driving behaviors such as illegal overtaking by driving
on a highway shoulder intentionally to pass through a traffic jam on other lanes. As
these drivers may not necessarily “interact” with the same vehicles they just pass
through, they choose to be negligent and not follow the traffic regulation. These negli-
gent driving behaviors consequently cause even more traffic as these vehicles on this
“additional” lane must eventually be merged to a regular lane. Dangerous lane chang-
ing, illegal overtaking, violating traffic signs, driving in the wrong way, speeding,
and tailgating are also examples of negligent driving behaviors observed in Bangkok
motorists. As this analysis shows, if there are many negligent motorists who are moti-
vated by their own time-saving interest, they may cause even more congestion than if
all motorists drive responsibly, as we have observed in traffic congestion in Bangkok.

5 Conclusion

Prisoner’s dilemma is one extension of game theory that has long been used to analyze
phenomena when individuals acting in their self-interest becomeworse off than if they
had cooperated. Evolutionary prisoner’s dilemma (EPD), in particular, incorporates
adaptive agents in iterated games. In the EPD, context preservation is found to play a
key role in the emergence of cooperation since cooperation tends to emerge if players
are likely to encounter each other again in the future. Therefore, for each player, the
interaction dynamic at the local scale ismore important thanwhat happens at the global
scale. In this sense, the neighborhood of the agents is a key factor in the emergence of
cooperation.
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This paper develops visual representation tools to analyze strategic behaviors from
a game theoretic perspective when spatial interactions and movement are possible.
It extends the conceptual framework of EPD to examine road users’ behaviors in a
setting of roads in Bangkok city center. The analysis assumes that while traveling, an
agent’s decisions take into account the costs associated with journey delays, accidents,
and traffic violation fines. This paper argues that motorists violate traffic regulations—
intentionally acting negligently—because of the belief that doing so saves travel time.
Paradoxically, if enough motorists share this belief, the result is even more conges-
tion.Overall traffic ismuch slowerwhen allmotorists behave irresponsibly—or always
defect, in comparison with scenarios when more drivers behave responsibly. Conges-
tion, thus, emerges as a result of strategic time-saving behavior.

In addition, when an agent’s context is not preserved—that is, when an agent’s
interacting neighbors are not constant—an agent is less likely to cooperate (or behave
nicely). As a result, an emergence of cooperation cannot be observed in the simulation.
This result supports the earlier findings of Cohen et al. (1999) and Power (2009) that
agent mobility and context preservation play an important role in the evolution of
cooperative behavior.

This modeling framework of travel behavior can be extended in several possible
ways. Further extensions include incorporating other road networks in the model
and allowing for agent’s heterogeneity such as types of vehicle or characteristics
of drivers. The model can also potentially incorporate a number of policy analyses
such as studying an increase in traffic violation fines, the effectiveness of traffic law
enforcement, and congestion pricing.
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