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Chapter 16
Alternative Strategies for Mapping ACS
Estimates and Error of Estimation

Joe Francis, Nij Tontisirin, Sutee Anantsuksomsri,
Jan Vink and Viktor Zhong

Introduction

The beloved “long form” is dead. Long live the American Community Survey! As
Eathington (2011) recently exclaimed, “Beginning in 2011, regional scientists and
other socio-economic data users must finally come to terms with major changes in
U.S. Census Bureau methodologies for collecting and disseminating socioeconomic
data.” Eathington’s proclamation holds all the more true for today.

The American Community Survey (ACS) is now the primary mechanism for
measuring detailed characteristics of the population at the sub-state level and espe-
cially smaller geographies like townships, places, and tracts. It is the main vehicle
for disseminating information about educational attainment, occupational status,
income levels (including poverty), and much more. As Sun and Wong (2010) write,
“Census data have been widely used to support a variety of planning and decision
making activities.”

Additionally, during the past decade, there has been increasing interest among
demographers, economists, planners, and regional scientists in mapping census data
including the ACS. The main reason is that a map can show the spatial distribution
of demographic data better than any other medium. Maps add another tool to the
demographer’s analytic toolbox.

Compared to the past, mapping has become an easier and more straightforward
task. The widespread availability of desktop GIS systems and trained GIS profes-
sionals assures that an increasing amount of decennial, ACS, Small Area Income
and Poverty Estimates (SAIPE), and other survey data will become mapped. The
Census Bureau itself now routinely publishes reference maps and hosts an auto-
mated, interactive mapping service that can be invoked as part of ACS data display
via the American Fact Finder. TIGERmap has been launched, for example. At the
same time, mapping sample survey data like the ACS and SAIPE present significant
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cartographic challenges in portraying visually both the estimates and the error of
estimation on maps.

As the ACS begins its second iteration, with updated Census 2010 based geog-
raphies and new vintages of 1, 3, and 5 year ACS now available, demographers as
well as geographers face quandaries about how to present such information to the
intelligent public. Given that the ACS is such as a relatively small sample, particu-
larly in the sub-county, tract. and block group geographies, it has become ever more
pressing to assure the user of our research that the information is reliable. But, par-
ticularly where there is high uncertainty, to so signal that low data quality.

With the dissemination of the American Community Survey, the U.S. Census
Bureau began to report forthrightly the uncertainty of its sample estimates by in-
cluding not only the estimates for the various TIGER geographies, but also the ac-
companying error of estimation. Specifically, the ACS estimates are published with
associated margins of error (MOE) representing a 90 % confidence level under an
assumed Gaussian distribution. By contrast, the published 2000 Census data tables
did not include this information with the estimates for data from the “long form.”
Today demographers increasingly recognize that this uncertainty needs to be ex-
pressed to a potential user along with the estimates. But how?

This quandary is particularly evident in mapping ACS data. Unfortunately, the
most prevalent practice at present is to largely ignore the unreliability of ACS esti-
mates when mapping these data. But this needs to change if users of our maps are
to place confidence in our map making.

Because of the small sample sizes, particularly in sub-state geographies, differ-
ences between different units or percent change across time for the same unit may
appear to be significant when they are not. Moreover, for GIS analysts, this becomes
a problem as the apparent emergence of a spatial pattern based upon these differ-
ences of ACS estimates among areal units may not be real, but may be the result of
sampling errors instead. As every spatial demographer knows, determining whether
differences are significant is crucial in analyzing the spatial distribution of some
characteristic before drawing any conclusion other than that of spatial randomness.
On a more technical level, cartographers recognize that uncertainty, as revealed by
measures of error, can also affect even the seemingly simple process of determining
optimal class intervals or boundaries in a thematic classification. That is, the deter-
mination of class boundaries may be influenced by the errors of estimates.

This paper is about exploring ways to improve communication of the estimates
and reliability of ACS estimates in map making and in our published map products,
whether in static “printable” form (e.g. a pdf) or in web based interactive delivery
format (html, JavaScript, KML). First we will summarize geo-visualization devel-
opments over the past two decades on ways to present uncertain data. Second, we
will present selected works of others more directly related to the ACS situation—
polygons with attributes derived from a continuous monthly sampling activity and
updated periodically. Third we will present some of our own work at the Cornell
Program on Applied Demographics exploring how to communicate simultaneously
both the ACS estimates and margins of error for polygons at the county and sub-
county levels of geography.
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General Approaches to Identifying and Dealing with GIS
Data Error

All GIS data have error to some degree. There are many reasons—measurement er-
rors, interpretation errors, classification errors, interpolation errors, generalization
errors—with consequences like uncertain propagations and poor decisions. Indeed
one current view among GIS scientists is that both spatial (positional) and attribute
information have an inherent associated uncertainty. Zhang and Goodchild (2002)
classify uncertainty in GIS work into two broad categories—positional accuracy
and attribute accuracy—and group data errors involved into three categories—error,
randomness, and vagueness. Census geography has positional uncertainty issues
in the TIGER files—notably boundary accuracy, missing and misaligned streets,
address uncertainty for non-city style address—but considerable improvement has
taken place during the last decade and work is underway to continue improvement
of both TIGER and MAF accuracy, as witnessed by the Geographic Support System
initiative under the direction of the Census Bureau’s Geography Division (http://
www.census.gov/geo/www/gss/index.html). On the other hand, the ACS, along
with the SAIPE and similar surveys, has attribute uncertainty that affects the data
quality we deal with as well. The latter is the main concern of this paper.

In one sense, dealing with spatial accuracy and attribute uncertainty is still a
fairly new and evolving area of study in GIS and analytic cartography. A quick
background search revealed that it was not until the early 1990s that GIS users
as a whole begin to take notice of spatial and attribute uncertainty. One can only
speculate as to the reason, but perhaps it was a special issue of Cartography and
Geographic Information Science that served to focus and spawn a research program
on the topic of ‘Geo-visualization” (MacEachren and Kraak 2001). In that special
issue Fairbairn et al. (2001) proposed that representation of uncertainty was a key
research challenge, and even went so far as to say that attribute uncertainty could
be characterized as a “new” component of data. Fairbairn et al. (2001, p. 20) for
example stated, “...that a representation of uncertainty may supplement existing
data or may be an item of display in its own right...” Similarly, Pang (2001, p. 12),
after reviewing the visualization developments of the 1990s, expressed the view-
point that “visualizing the uncertainty in geo-spatial data is as important as the data
itself... There is a lot of opportunity to further improve the current suite of uncer-
tainty visualization techniques to meet this challenge. Particularly, in creating new
visualization techniques that treat uncertainty as an integral element with the data.”

Among the early approaches taken toward mapping uncertainty was via ma-
nipulating graphic “primitives” like color, transparency, line width, and sharpness
or focus. Examples that fell under this category included Yee et al. (1992) work
on varying contour widths depending on certainty. Dutton (1992) explored map-
ping uncertainty parameters to different points in HSV (hue, saturation, and value)
space. Monmonier (1990) experimented with using cross hatches to express the de-
gree of unreliability. Beard et al. (1991) investigated the inclusion of “fog,” where
the amount of haziness corresponds to the amount of uncertainty or the decreasing
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amount of “focus” is represented by the amount of blurring as uncertainty increases.
Pang et al. (1994) used the degree of transparency to indicate confidence in an inter-
polated field. Cedilnik and Rheingans (2000) utilized “perturbing” and “blurring”
overlaid grid lines. Interestingly, these same kinds of approaches are being explored
still today as ways to deal with ACS uncertainty in data estimates.

Meanwhile, on a related front in GIS statistics, Chrisman (1995) in discussing
S. S. Steven’s widely influential work on the levels of measurement expressed the
belief that Steven’s nominal, ordinal, interval, and ratio scales were not adequate for
geography. He gave several examples where Steven’s scheme, based on an implied
linear measurement epistemology, falls apart for GIS data. Most convincing of his
examples is the use of circular measurement in GIS where the distance from 0° to 1°
is the same as from 359° to 0°, an outcome not expected under linear measurement.
A second example of the inherent limitation of Steven’s measurement scale system
is the ability to reduce two linear orthogonal measures (the X-axis and the Y-axis)
to a single scale using a radian angle measurement. Perhaps the most damning cri-
tique comes from Chrisman’s pertinent illustration involving the commonly used
multidimensional measurements on some spatial object in GIS analysis. He writes
(1995, p. 275) “Multidimensional measurements create interactions not imagined
in the simple linear world of Stevens. Since GIS is inherently multidimensional,
the linear model limits our understanding concerning the interactions of measure-
ments.” Researchers who conduct spatial analyses or use spatial statistic procedures
are very familiar with outcomes being a function of multidimensional interactions
of measures.

One convergence of these developments in geovisualization and measurement
theory was that GIS researchers began exploring the idea of using fuzzy classifi-
cation as techniques for expressing uncertainty in the estimation. Burrough et al.
(1997) expressed the belief that «“... there is still a need for GIS methods to visually
explore results of fuzzy classification.” MacEachren and Kraak (1997), as well as
Burrough and McDonnell (1998), advanced the notion that new visualization tech-
niques were needed to allow users to explore uncertainty in spatial data visually and
to investigate the effects of different decisions in the classification process. Their
concern was that the common practice of presenting discrete classes of phenom-
enon like soils using sets of colors in a choropleth map was too constraining. They
referred to this as a “double crisp” approach wherein (1) the features were drawn
using sharp boundaries to delineate soil bodies and (2) crisp classes were used to
classify the different types of soils. Yet they state the reality of the distribution of
soils types across a landscape is that they weren’t really as crisp as the chorop-
leth map may indicate. Zhang and Goodchild (2002) also discuss the use of fuzzy
classes in preference to rigidly defined classes for GIS work. The question of sharp
versus fuzzy classification of values in the context of sampling and measurement
uncertainty remains an issue we face today in dealing with ACS estimates in the
presence of error of estimation.

Another of the new concepts advanced during this era was that of multiple mem-
bership maps, reflecting the multidimensional nature of geographic objects and how
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to classify them. The notion was that multiple memberships were more complex
than could be adequately handled by the traditional strict classification methods
used in cartography (natural breaks, quantile, equal interval, defined interval, stan-
dard deviation, etc.). Instead multiple memberships could be better handled by
means of different methods. Dovetailing with the work on fuzzy classification, the
notion was that memberships based on multiple attributes should be derived using
some continuous classification algorithm such as fuzzy k-means (DeGruijter and
McBratney 1988). For example, Hengl et al. (2002), working with digital imag-
ery, explored the use of pixel and color mixture as techniques to deal with visual
fuzziness and uncertainty. Kardos et al. (2003) explored the value of hierarchical
tree structures as a geovisualisation of attribute uncertainty technique. In their pa-
per two such structures were compared: the region quadtree and the Hexagonal or
Rhombus (HoR) quadtree, both variable resolution structures. The conclusion from
these explorations was that an area where attribute data is uncertain will show less
resolution through the data structure, whereas an area that is more certain will show
greater resolution through the quadtree structures. While this work is a bit complex
for the immediate concern of the present paper, their work is instructive on alterna-
tive approaches we might take to dealing with uncertainty of sample survey data
like the ACS.

Another third set of developments came from working with digital imagery,
where ideas centered on the notion that when we have multiple memberships for
each pixel of a map, one could make conclusions about the ambiguity, i.e. indis-
tinctness, of a specific class and overall confusion among all classes. Operationally,
these researchers used what they called a confusion index to inspect confusion or
fuzziness among multiple membership maps (Burrough and Frank 1997). Hengl’s
work along with Hootsmans (1996) was focused on color confusion as the means
to create and detect fuzziness, but the idea of fuzzy boundaries isn’t that far afield
from Xiao’s concerns with robustness in classification, which will be discussed later
(Xiao et al. 2007)

In the early 2000s, analytic cartographers developed some of the new interactive
data exploration techniques such as the use of slide bars, point and click events,
blinking and animations as ways to give impressions of the amount of data uncer-
tainty in estimates. The research on these techniques will be discussed in the next
section of this paper because they relate more directly to handling uncertainty in
ACS data.

While there has been considerable attention to issues surrounding attribute un-
certainty over the past 20 years, a couple of general conclusions can be drawn
from the review. One is that previous research provides a number of platforms on
which to build in our efforts to portray estimate unreliability via maps of ACS data.
Secondly, it is currently safe to say that uncertainty in spatial information is still
an evolving field of GIS and analytic cartography. Evidence of this is the current
dilemma we are facing in how to deal with errors of estimation in the ACS and
related surveys.
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Error of Estimation in the ACS

As mentioned, this paper is focused primarily on attribute accuracy or uncertainty
in the ACS. Unfortunately, for the most part, communicating the data quality of
ACS estimates have been either ignored or underplayed in maps of ACS data. Tor-
rieri et al. (2011) present several examples of this pattern from the news media,
governmental agencies, and academic research. One possible reason for this may be
that, while guidelines for use of ACS data indicate the importance of indicating the
measures of error along with the estimates, there is no consensus yet evolved as to
a standard (or set of standards) for reporting the measures of error. Sun and Wong
(2010, p. 287) note there have been various national committees that have deliber-
ated on how to present this information but no standardization has emerged. Hence,
this seems to signal the need for further exploration of alternative approaches, and
this is the motivation for the discussion of various considerations that follow on
how to handle error of estimation from survey data like the ACS and SAIPE. A
number and a mixture of issues are involved.

While not an exhaustive classification, there seem to be at least nine major is-
sues. One issue revolves around what to use as a measure of error, whether to use the
traditional 90, 95 or 99 % statistical confidence interval under an assumed Gaussian
theoretical distribution, or to employ a relative measure of error like the coefficient
of variation. (A closely related issue should be whether a Gaussian distribution is
always the most appropriate theoretical distribution to benchmark against, but given
the generally large sample size and plethora of variables being estimated, this con-
cern seems to have been conveniently either underplayed or ignored.) A second
major issue surrounds the question of whether to present error of estimation in a
separate map beside the map of estimates (the adjacency technique), or overlay
them on the same map (the integrative technique) and use a “bivariate” legend to aid
interpretation of patterns. A third major issue surrounds the rigidity of crisp classes
for categorization of estimates in our choropleth maps given the errors of estima-
tion and the likelihood that the “true” value of the variable placed arbitrarily in a
given class may actually land in an adjacent class. Falling into the latter discussion
is the more basic question of whether to present ACS data via classed or unclassed
(unique values) thematic maps. A fourth major issue is the number of classes to em-
ploy for categorizing estimates in the face of uncertainty. A fifth concern is classi-
fication methodology. Symbolization of uncertainty is the sixth major concern. We
will show various approaches to symbolization based on the principles espoused
above plus use of cartograms. A seventh issue is whether it is better to present this
combination of information via static maps (pdf’s, jpeg’s, eps, etc.) or through web
based interactive maps (html, JavaScript, KML), which have more flexibility. Each
of these issues is addressed below. Torrieri et al. (2011) identify an eighth issue spe-
cific to mapping ACS data for many geographic areas simultaneously. Ninth, there
is the issue of map complexity and viewing audience.
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Absolute vs. Relative Error

Regarding what to use as a measure of error as well as Li and Zhao (2005) argue for
the using a relative error. Like other researchers, they recognize that absolute error
measures are sensitive to the scale of the estimate. That is, the larger the estimate, X,
the larger the value of an absolute error measure like the standard error (X). Wong
and Sun’s concern is that, because larger estimates have larger standard errors of es-
timates, researchers will draw inappropriate conclusions in comparing two or more
estimates due to possible misinterpretations about the size of error-namely that at-
tributes with large absolute error will draw the researcher/user to conclude, some-
what mindlessly, that the attribute has greater unreliability (and therefore shouldn’t
be used) rather than interpreting that error relative to the size of the estimate. On
the other hand those who advocate for the uses of relative error measures assert
that relative measures of error don’t present this confusion and that the coefficient
of variation is independent of the estimate scale. Li and Zhao (2005, pp. 2-3), us-
ing the definition that relative error is one that is simply relative to some referent,
develop this idea further and propose three possibilities: the coefficient of variation,
the estimate relative to measurement error, and a third class of relative errors where
the estimation error of one estimator is relative to that of another estimator. We will
concern ourselves in this paper only with the question of whether to use (1) an ab-
solute measure of error like the traditional 6(X) and a 90 % confidence interval, or
(2) arelative error like the coefficient of variation (CV).

Our work at the Program on Applied Demographics leads us to conclude that the
choice of whether to use a traditional confidence interval as the MOE or a relative
one depends on the format of the variable being estimated. Specifically, while pre-
senting information about counts like totals (e.g. number of housing units) and fre-
quencies (occupied, vacant) or medians (e.g. median household income) and mean
averages, then use of relative measures of error like the coefficient of variation (CV)
seems more appropriate. But when representing information about proportions or
percentages (e.g. percent Hispanic), or information about a ratio like the sex ratio,
the standard confidence interval seems the more appropriate measure to employ.
Likewise, when examining changes over time like the percent change in median
housing costs, it may be better to use an “absolute” confidence interval rather than a
relative measure of error. In short, one shouldn’t mindlessly employ a relative error
measure either.

Because these estimates are bounded by 0 to 1 in the case of proportions, or 0 to
100 in the case of percentages, the CV presents misinterpretation problems that are
avoided when the traditional confidence interval is employed instead. To illustrate,
consider a variable like percent foreign born. Let’s say we estimate for a given
geographic unit that 10 % of the population in a minor civil division is foreign born
and is reported to have a MOE of +8 %. Here we have an estimate, p, with a cer-
tain standard error. On the other side of the dichotomy, we have an estimate of 1-p
or 90% native born with the same MOE of +8 %. These two facts are structurally
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equivalent estimates, at least on the face of it, but when you calculate the CVs, the
CV for the 10% foreign born is 48 % (very unreliable), while the CV for the 90 %
native born is 5% (very reliable). Does this make sense?

The reason for this anomaly is the nature of the distribution of the CV as shown
in the nearby plot (Fig. 16.1), which shows the declining, nonlinear relationship
between the estimate and the CV. As the plot indicates, the smaller the estimated
p value, the larger the coefficient of variation, while the larger the estimate, the
smaller the coefficient of variation. Hence, even though the above two possible
estimates of foreign born are equivalent structurally because they are two sides of a
dichotomy, their certainty appears to be very different.

On the other hand, for variables like this, the confidence interval performs as
one would expect. See Fig. 16.2. For both the estimate of p=10% foreign born
and ¢=90% native born, the standard error of estimate is the same, approximately
0.01 when n=1,000. This symmetry for placing a confidence bound on the estimate
makes more sense both intuitively and statistically to us compared to a nonlinear
relative error measure like the CV.

For our work, when presenting information like totals or frequencies, or sum-
mary statistics like medians and mean averages, we prefer to use relative measures
of error like the coefficient of variation (CV). See Fig. 16.3, where the first map
reflects Sun and Wong’s cross-hatching approach with three data-driven categories,
and the second is one showing our exploratory work at PAD on developing legends
where category limits are set manually to values more meaningful to researchers
and policy workers—0-15, 15.1-30, 30.1-60, and more than 60 %.

However, when presenting information like proportions or percentages, we pre-
fer to use absolute measures of error like the traditional standard error of estimate
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and confidence interval. See Fig. 16.4, where the first map represents the Sun and
Wong crosshatching approach and the second shows some of our exploratory work
with legends at the Program on Applied Demographics, here using cross hatching
and color hue to differentiate

Side-by-Side Maps vs. Overlay Maps

A second major issue faced by spatial demographers and GIS analysts is whether to
present error of estimation in a separate map beside the map of estimates (two map,
side-by-side technique), or overlay them on the same map and use a “bivariate” leg-
end to aid interpretation of patterns (single, integrated map technique). Compare the
map layout in Fig. 16.5 for a side-by-side arrangement and Fig. 16.6 for an example
of an overlay map.

MacEachren and colleagues have probably conducted the most extensive ex-
ploration of this question and have concluded that the single integrated map ap-
proach, wherein estimates are presented via color coding on a choropleth map and
uncertainty of these estimates symbolized by cross-hatching, works better. Sun and
Wong (2010, pp. 290-291) build on these results and present illustrations of both
approaches, using New Jersey counties. In our own work, we found that both ap-
proaches were taxing to absorb for the general educated public viewer. However,
for those more experienced with maps, the single integrated map was preferred.

We will address the issue of symbolization for these maps below in a later sec-
tion, but in our work we find that viewers do not prefer (even dislike) the use of
cross-hatching to portray uncertainty because they felt it obstructed viewing and
understanding the classification of the estimate for the county or sub-county unit of
geography. Compare for example the clarity of the maps in Fig. 16.7, which uses a
less obstructive symbolization of error, with those in Fig. 16.6.

This judgment of cross-hatching producing an obstructed view was particularly
true for maps with lots of geographic units being displayed simultaneously, like the
1,000-plus minor civil divisions (towns, cities, reservations) in New York.

Crisp vs. Modified Classes

A third major issue surrounds the structure of classes used to group estimates. For
continuous attributes cartographers typically group values, for purposes of display
on a choropleth map, into 4-6 classes using a classification methodology like natu-
ral breaks, equal interval, equal size (quantile), standard deviation, or some similar
scheme. Doing so always raises the question of arbitrariness and rigidity of crisp
class boundaries. Are these the optimal boundaries? How much alike are the spatial
objects falling into a given class compared to those in an adjacent class? The latter
question is of particularly high valence for spatial features “at the boundaries of
the class.” These questions take on an extraordinary relevance for categorization
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Fig. 16.5 Side by side maps, /eft showing estimates of median housing costs and right the MOEs
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Fig. 16.6 Overlay map with one legend for estimates and the other for MOE

of estimates in our maps in the face of the errors of estimation and the likelihood
that the “true” value of the variable placed arbitrarily in a given class may actually
belong in an adjacent class. Xiao et al. (2007) investigated this issue and note, “the
probability that an estimate is significantly different from values in other classes is
a function of a number of factors, among them being the classification scheme and
the size of the confidence interval.”

Due to the uncertainty of estimation, settling on the number of classes, the class
interval, and the class boundaries is more complex than when either (1) there is
complete attribute certainty or (2) the error is small. As Xiao et al. (2007, p. 123)
write, “When producing a choropleth map, it is important to realize that, owing
to data uncertainty, each enumeration unit has a chance to fall into more than one
class.” In mapping ACS estimates, because the error is often large, margins of error
need to be considered in setting the class boundaries and class interval such that
when an estimate falls into a given class, the class boundaries are broad enough that
they can include the confidence limits of the estimate as well.

Crisp classification of values in GIS follows the same principles as statistics—
values assigned to a given class belong to that class and only that class. That is,
there is no overlap of values of a given class into another class. However, because
of the uncertainty of ACS estimates, unless error is taken into account in setting
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Fig. 16.7 Map of female labor force participation rate showing less obstructive MOE overlay

the class boundaries for a map legend, when the estimate is assigned to a class in
the choropleth map, the confidence bounds may extend into other classes rather
that coincide with the class boundaries specified (arbitrarily) for the legend. One
consequence of uncertainty here is that the true value, represented by the estimate
(we hope), may not be significantly different from values in those lower or upper
classes in the map legend. In terms of symbology, the problem can be framed as
one in which areas (e.g. townships) with different colors could have estimates that
are not significantly different from each other, and areas with the same colors could
have significantly different estimates. An alternative approach to dealing with this
issue is to employ fuzzy classification as discussed earlier.

Sun and Wong (2010, p. 293) illustrate the issue of accommodative class interval
width and boundary demarcations in the face of estimate unreliability with the fol-
lowing Figures (see Fig. 16.8, adapted from their Fig. 5), where the triangles repre-
sent the estimates, the class breaks (blue lines) are established at 20 and 30, and the
confidence limits are represented by the error bars with round tips.

Notice in Fig. 16.8 that only for scenario one are both the estimate and the con-
fidence limits of the estimate within the class limits. In only that situation can we
be assured that the estimate is significantly different from estimates assigned to the
classes above and below it. For the other scenarios, at least one of the confidence
limits reaches into another class, meaning that we cannot be assured that estimates
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Fig. 16.8 Chart illustrating problem of establishing clear-cut category boundaries in face of mea-
surement uncertainty

assigned to the focal class are significantly different from those assigned to the
other classes.

Xiao et al. (2007) present the issue in a slightly different way. They use the term
“robustness” to measure how well a classification works and define robustness of
classification this way: “A classed choropleth map is robust if each enumeration
unit has little chance of falling into a class other than the one to which it is as-
signed.” To illustrate the application of their robustness concept, they ask the reader
to consider two distinct enumeration units that have observation values x and y. See
Fig. 16.9 (adapted from their Fig. 1).

The distributions of x and y are unknown, but with uncertainty we need to recog-
nize that those x and y values could fall into any of the various classes depending on
which of four classification schema are used. To illustrate the issue for at least two
variables with uncertainty, Fig. 16.9 shows four possible classifications (A, B, C, or
D), each using five classes, that the researcher may want to employ for classifica-
tion and a map legend. In this illustration the class boundaries are represented by
the vertical bars and the class interval represented by the width of the line between
these bars.

Notice if classification scheme A is used, observations x and y will fall into class-
es 2 and 4, respectively. Xiao et al. (2007) indicate that under classification scheme
A the classification of observation x is robust because all other possible values that
could have occurred for x would have also fallen into class 2, since the interval of
this class covers most of the distribution of x. On the other hand scheme A is not ro-
bust for observation y since many of its other possible values would likely fall into
class 3 or 5, instead of class 4. The reverse would be true for classification B, where
the class limits for y are robust but are much too narrow for other plausible values
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Fig. 16.9 Illustration of robustness of classification under estimate uncertainty

that x could assume. Classification scheme C is the least robust overall scheme as
there is low probability that all or most of the possible values of x will fall into class
2 and likewise into class 4 for y. By contrast classification D would best satisfy their
criteria of overall robustness. The general point that Xiao et al. are making is that
the uncertainty in attribute data makes it almost impossible to produce a perfectly
robust choropleth map unless we somehow include robustness information as an
element in the classification. But how do this?

Sun and Wong (2010, p. 294) suggest that one way around the problem is to first
sort the estimates according to their value. Second, attach the corresponding confi-
dence bounds to the estimates. Third, starting with some estimate, say the highest,
compare it to nearby estimates to determine whether their confidence bounds over-
lay. If so, then group them into the same class. Fourth, proceeding onward, consecu-
tive estimates whose confidence intervals do not overlap should be put into a differ-
ent class. Their feeling is that this approach, which they call the “class comparison”
approach, assures us that the estimates in a given class are significantly different
from estimates in another class. On the other hand, a problem of this approach is
that estimates within the same class may also be significantly different.

Xiao et al. (2007) have a much more elaborate approach that involves computing
the probability of each observation x. falling into each class j=1...k, which they
designate as Py Letting P be the probability that unit i belong in class j (1 <j<k),
they calculate p; as follows:

Pr(x, € 1,) = [ 7, (x)dx (16.1)

J
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where [j is the interval of class j. Next they introduce the idea of a robustness mea-
sure q,, for the entire choropleth map such that when the robustness values for all
enumeration units are obtained, one has a set {p|l<i<n}. Using q, as their map
robustness measure, where a is the tolerance level the researcher is willing to accept
for complete classification accuracy, they require that (1-q,) % of its enumeration
units have a p, value greater than or equal to q,.

With this conceptual development in place, Xiao et al. (2007, p. 125) state: “The
key to obtaining p,, and consequently q, (which is the a'" quantile of {pi}), is to com-
pute p; based on the uncertainty distribution of each unit. For many circumstances,
the cumulative uncertainty distribution function can be analytically expressed (i.e.
p, can be written in closed form) so that for each class the exact p; values can be
directly computed using equation (1).” Otherwise, they claim to be able to estimate
the p; values via Monte Carlo approaches.

Xiao et al. (2007) also conducted a number of “experiments” of how well their
robustness measures perform for various tolerances. They ran analyses on various
combinations of five factors: type of data, type of uncertainty distribution, level of
uncertainty, number of classes, and method of classification. Data consisted of four
contrived datasets represented as polygons formatted into a regular lattice of size 33
by 33. The attributes for these polygons were invented continuous values that were
scaled to range between 0 and 1, and then arranged to form four statistical surfaces:
(1) uniformly distributed linear, (2) multimodal linear, (3) linear with a skewed data
distribution, and (4) fractal. Regarding the level of uncertainty, they indicate that for
a given polygon, two different uncertainty probability distributions were tested: a
uniform and a Gaussian distribution. The number of classes used for classifying the
data ranged from 5-100 with an increment of 5; hence 5, 10, 15...100. However,
in reporting their results, they only focus on the “5 class” and “10 class” results.
Equal-intervals, quantiles, and Jenks were the classifications schemes used. Their
most general finding is that indeed the robustness of classification is a function of
the level of uncertainty in the data. That is, as uncertainty increases, the probabil-
ity of getting the polygon values into their most likely class decreases—regardless
of the distribution of the values, the number of classes used, or the classification
method employed. As Xiao et al. write (2007, p. 128), “This observation suggests
that uncertainty effects must be considered as part of the classification process and,
more importantly, that such effects should be revealed to map readers.”

In our work at the Program on Applied Demographics we explored the idea of
portraying the probability that the estimate belonged to the class to which we assign
it. For static maps we tried the use of pie charts, where each slice of the pie represent-
ed the cumulative probabilities for a Gaussian distribution that the estimate belonged
in the class to which it had been assigned by the Jenks method. See Fig. 16.10.

We also experimented with classifying and displaying the lower bound or the
upper bound of the confidence intervals. This adds much complexity to the legend
and interpretation of the map, but has the advantage that standard crisp classifica-
tion methods can be applied. See Fig. 16.11.

For dynamic, internet mapping one can provide this information about the prob-
ability of the estimate belonging to the class to which it was assigned as a feedback
when the user clicks or enters a polygon on the screen. We will illustrate this later in
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Fig. 16.10 Use of pie charts to symbolize cumulative probabilities of the estimate being what is
shown for the geography

the section of this paper under the topic of static versus dynamic mapping. We have
not explored fuzzy classification. This is a possible area for further work.

Number of Classes

One of the concerns we have in mapping ACS data with uncertainty is how many
classes to use. Should one use more classes to achieve more certainty in classifica-
tion or are fewer classes with wider class intervals better? The work of Xiao et al.
is instructive here. They found that a small number of classes should be used if
map robustness is a significant concern. As they state (2007, p. 131), “In general,
an increase in the number of classes will induce a corresponding increase in the
number of enumeration units with uncertainty distributions that overlap multiple
intervals. Consequently, map robustness is reduced.” Hence, when the data have
high uncertainty, one can only create a robust classification map by keeping the
number of classes low.

In our work, we have mostly kept the number of classes to five, sometimes using
four. However, we haven’t really explored the interaction of uncertainty and modifi-
cation of class boundaries resulting in fewer classes with wider class intervals. This
seems a useful area for additional research.
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Method of Classification

One might expect that the Jenks method would provide the best classification of
the attribute values under most circumstances, as it tries to minimize within-class
variance while maximizing between-class variance to the extent possible. However,
Xiao et al. (2007) found that among the four types of distributions they examined—
linear, multimodial, skewed, and fractal—the difference between the three classifi-
cation methods (equal-intervals, quantiles, and Jenks) was small under conditions
of high uncertainty (low robustness). On the other hand, the Jenks method did out-
perform the others under conditions of (1) low uncertainty (high map robustness)
and (2) use of only a few classes (i.e. less than 6). In general Xiao and colleagues
found that for a dataset with a distribution similar to that of the multimodal or fractal
data used in their paper, the Jenks optimal classification method appeared to be a
superior choice, especially when a small number of classes was used.

In our own work we employed the Jenks classification method for “binning” the
estimates and found that it seems to work well. We also experimented with the use
of equal intervals for proportions, which allows one to express the corresponding
MOE’s in terms of the interval width.

Symbolizing Uncertainty

One aspect of research on spatially referenced attribute uncertainty during the past
decade is in the area of geovisualization. As Kardos et al. (2003, p. 2) write, “Most
research in attribute uncertainty has been focused on generating an uncertainty mea-
sure and then using visualization techniques to show uncertain areas.” They further
note that different attribute data uncertainty models are used for different spatial
data. In GIS and analytic cartography, some models are ideal when using soil data,
like fuzzy set theory, to express vagueness in soil type boundaries (Goodchild 1994).
Other models like Monte Carlo can be used sequentially to express propagation of
error and are good when dealing with random inaccuracies (Longley et al. 2001).
Sun and Wong (2010), building on the work of MacEachren and Kraak (1997, 2001)
for symbolizing errors of estimation for polygons, use metaphors (models) involv-
ing color and cross-hatching. But this isn’t the complete extent of the work that has
been done in the area and it is instructive to review some of the work of others at
this point.

Lots of models or metaphors have been tried to improve the user’s viewing
of spatial information. Dent (1993) discusses using metaphors in representation
through geometric shapes such as circles, squares, and triangles. In our own work
on ACS data, we explored the use of circles, triangles, and squares as an abstraction
to represent attribute uncertainty (Fig. 16.12).

MacEachren (1992) demonstrates the use of visual metaphors that included fog
cover to hide the uncertain map parts and the blurring of uncertain areas. Kardos
et al. (2003, p. 815) provide a very informative summary of things that have been
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Fig. 16.12 Illustration of use of hollow geometric shapes to symbolize MOE overlaying estimates
of income disparity

Fig. 16.13 Suggested visual metaphors to signal estimate uncertainty

Technique Fog Blur Blinking Pixels Colour Mix Pixel Mix
Metaphor of: | — Detail —Focus — Stability — Clarity — Fuzziness
Certain Data | Clear Sharp Focus | No Blinking High Saturation | Single Hue
Metaphor of: | - —Focused | —No Movement, - High clarity. | - Low
Revealing therefore more less recessive fuzziness
detail stable
Uncertain Data | Foggy Blurry Blinking over areas | Low Saturation | Multiple Hues
Metaphor of: | - Hiding — Unfocused | — Less stable. more | —Low clarity. | —High
Detail and merging | unsettling more recessive | fuzziness

tried, particularly the effects being sought through the symbolization metaphors
that various researchers have either proposed or used. See Fig. 16.13 (adapted from
their Table 1).

Kardos, et al. (2003) have summarized also the details of research that GIS sci-
entists and analytic cartographers have either proposed or used in the symbolization
metaphors over the past decade. See their Table 1).



268 J. Francis et al.

NYS Median Household Income

Fig. 16.14 Illustration of the use of pixel mixture to symbolize amount of estimate uncertainty
overlying the estimate

Since examples of adjacent and overlay maps have already been presented, of
interest here might be examples of a pixel mixture (pixelated) map (Fig. 16.14) and
a saturated color map (Fig. 16.15).

In this pixel mixture map, pixels values were assigned proportional to their value
under the Gaussian distribution. Hence, the greater the number of pixels having the
same category value as an estimate value (low mixture), the greater the certainty
of the estimate. On the other hand, when the polygon contains a lot of “spottiness”
(high mixture), the lower is the certainty of the estimate.

Another alternative approach to expressing uncertainty along with an estimate
value on the same map mentioned by Kardos et al. (2003) above is a map using
color saturation. Figure 16.15 gives an illustration of one using a combination of
saturation and intensity to symbolize both the value of the estimate and the un-
certainty of the estimate. Here darker color symbolizes polygons with estimates
of higher median household income while simultaneously intensity (dark to light)
symbolizes the degree of uncertainty of the estimate (from 0—100 %). So subcounty
units just north of New York City, as well as parts of Long Island, have high median
household income and the coefficient of variation is low. By contrast, areas further
north up the Hudson River have low estimated median household income and the
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Fig. 16.15 Illustration of the use of color saturation and intensity to symbolize estimate uncer-
tainty in combination with the estimate

coefficient of variation is large, reflecting the uncertainty that comes with smaller
sized samples for those areas.

Kardos et al. (2003) also conducted a bit of research on how users perceived and
utilized various symbolization (geovisualization) techniques designed to communi-
cate data uncertainty. Their research is especially pertinent to the ACS estimate and
error of estimation context. The data used was from the New Zealand 2001 census.
They derived an uncertainty value for each feature using data from the 2001 post
enumeration survey. Their survey was conducted via the internet and was designed
to provide answers to three aspects of various symbolizations: (1) the visual appeal,
(2) speed of comprehension of the information, and (3) overall effectiveness of the
symbolizations. The respondents were all experienced GIS users.

The maps presented to the respondents to evaluate in terms of visual appeal,
speed of comprehension, and symbology effectiveness consisted of the following
“treatments.” Nine different techniques were assessed and rated—adjacent maps,
overlays, blurring, fog, pixel mix, saturation of color, sound, blinking pixels, and
animation—using a five-point assessment scale (excellent, good, moderate, limited,
and ineffective), along with the option of stating that the metaphor was “not use-
ful.” After examining the performance of their nine techniques on the usefulness,
visual appeal, and speed of comprehension criteria, Kardos et al. (2003) drew the
conclusion that the blinking of areas metaphor/technique outperformed the other
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Fig. 16.16 Illustration of use of cartograms to symbolize uncertainty in combination with esti-
mates of median household income

techniques. Overlay was found to be useful by 84 % of the respondents, while 78 %
found adjacent maps (one for the estimate and one for uncertainty) were useful,
with “fogging” and “blurring” next most useful.

The reason the respondents stated for preferring the blinking technique over oth-
ers is that it didn’t obstruct their viewing of the original information values. While
they found the overlay technique useful, the felt it interfered with their understand-
ing of the values symbolized by color. These are very useful finding.

In our own work, we found the same problem of confusion when presenting both
the estimate and uncertainty information overlay. Side-by-side maps were just too
awkward. So, we explored a modification of a “blinking” technique. For our static
(pdf) maps, we first present the estimate for the geographic areas of interest) and
then, with one mouse click, the viewer overlays the error of estimation information.

A final example of a map overlaying both ACS estimate and error of estimation
is the Cartogram. This approach was suggested by Jerzy Wieczorek (2012, http:/
civilstat.com/?p=>50), who provided an illustration that spurred the development of
the cartogram approach in Fig. 16.16.

In this cartogram approach, the polygons (counties of NY) were kept in accurate
size but the internal polygons were distorted in size to reflect the degree of uncertainty
in three classes—high, medium, and low. Hence, the more the internal polygons are
shrunk relative to the county boundaries, the lower the reliability of the estimate.
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Static vs. Dynamic Interactive Maps

Dynamic interactive maps permit much more flexibility in presenting information
compared to static maps. As Torrieri et al. (2011, p. 11) state, “Digital maps that in-
clude options for concealing or displaying information relating to the quality of the
data displayed offer greater flexibility to the map designer.” For one thing, you can
program the application that serves out the information to “blink” those areas with
high uncertainty as well as having MOEs displayed when the user passes a mouse
cursor over the area. With the increasing availability of APIs for implementing these
techniques, this is an area that should be explored by the Census Bureau and others.
Jan Vink has done this for ACS data and New York geographies). Nicholas Nagel
has built a version for SAIPE data and Tennessee geographies). For these interac-
tive, internet maps the user has only to move the mouse over a geographic unit of
interest and the error of estimation is displayed.

A slightly different approach to an internet-based map containing a layer of es-
timates and a layer of measures of error of estimation is one in which each of the
layers of information can be toggled on or off, as can various boundaries.

While we think these approaches will improve the effectiveness of presenting
both the estimates and their error, there are limitations to these techniques as well.
For one, they require the user to make that mouse movement. Secondly, digital dis-
play techniques are generally outside the training of most spatial demographers, so
this portends slow adoption of this approach.

ESRI has experimented with presenting maps of ACS estimates and error of es-
timation in the ESRI Business Analyst Online. It is served out via the internet but is
only available via subscription. Moreover, unlike the Vink and the Nagel dynamic
maps, the Business Analysts Online maps are served one at a time and are not over-
lain. Hence, they are really akin to the side-by-side maps discussed earlier.

Research is needed comparing these internet served interactive maps with static
maps to see what users find more useful, understandable, and appealing.

Number of Geographic Units on Map

Lastly, Torrieri et al. (2011, p. 10) have noted that the overlay approach to commu-
nicating error of estimation via an integrated map has limitations when the number
of geographic units in the map display is numerous. They illustrate this by asking
the reader to imagine presenting both kinds of information (estimate and MOE) on
a map for all 3,143 counties in the United States. For this situation they suggest that
the map maker present only selected regions of the entire geographic coverage at
time.

In our work at the Program on Applied Demographics, we explored the idea
of using unfilled symbols of different shapes overlaid on a choropleth map of ap-
proximately 1,000 sub-county geographies (towns, cities, and reservations) in New
York State.



272 J. Francis et al.

References

Beard, M. K., & Buttenfield, B. P. (1991). NCGIA Research Initiative 7: Visualization of Spatial
Data Quality. NCGIA, Technical Paper, pp. 91-26.

Burrough, P. A., & Frank, A. U. (1997). Geographic objects with indeterminate boundaries. Trans-
actions in GIS, 2(4), 377-378.

Burrough, P. A., & McDonald, R. A. (1998). Principles of geographical information systems. Ox-
ford: Oxford University Press.

Cedilnik, A., & Rheingans, P. (2000). Procedural Annotation of Uncertain Information. Proceed-
ings of visualization 00, pp. 77-84. IEEE Computer Society Press, 2000.

Chrisman, N. (1995). Beyond Stevens: A revised approach to measurement for geographic infor-
mation. http://mapcontext.com/autocarto/proceedings/auto. ../pages281-290.

Dent, B. D. (1993). Cartography: Thematic map design. Dubuque: William C. Brown Publishers

Dutton, G. (1992). Handling Positional Uncertainty in Spatial Databases. Proceedings Sth in-
ternational symposium on spatial data handling, pp. 460-469. University of South Carolina,
August 1992.

De Gruijter, J. J., & McBratney, A. B. (1988). A modified fuzzy k-means method for predic-
tive classification. In H. H. Bock (Ed.), Classification and related methods of data analysis
(pp- 97-104). Amsterdam: Elsevier.

Eathington, L. (2011). Holy MOE! Don't Marginalize the Error in the American Community Sur-
vey. Paper was prepared for presentation at the 2011 annual meeting of the Southern Regional
Science Association in New Orleans, LA.

Fairbairn, D., Andrienko, G., Andrienko, N., Buziek, G., & Dykes, J. (2001). Representation and
its relationship with cartographic visualization. Cartography and Geographic Information Sci-
ence, 28(1), 13-28.

Goodchild, M. F. (1994). Spatial Accuracy. Proceedings, 22nd annual conference, Australasian
Urban and Regional Information Systems Association, Sydney, addendum. [216].

Hengl, T., Walvoort, D. J. J., & Brown, A. (2002). Pixel and Colour Mixture: GIS Techniques for
Visualisation of Fuzzyness and Uncertainty of Natural Resource Inventories. In G. Hunter (ed),
Proceedings: International symposium on spatial accuracy in natural resources and environ-
mental sciencel0—12 July 2002, Melbourne, Australia.

Hootsmans, R. M. (1996). Fuzzy sets and series analysis for visual decision support in spatial data
exploration. PhD Thesis, University of Utrecht, Utrecht, 167 pp.

Kardos, J. D., Moore, J. A., & Benwell, G. L. (2003). The Visualization of Uncertainty in Spatial-
ly-Referenced Attribute Data Using Trustworthy Data Structures. Proceeding of 15th annual
colloquium of the Spatial Information Research Centre (SIRC 2003: Land, Place and Space).

Li, X. R., & Zhao, Z. (2005). Relative Error Measures for Evaluation of Estimation Algorithms.
Paper presented at IEEE conference, 2005.

Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2001). Geographic information
systems and science. New York: Wiley.

MacEachren, A. M. (1992). Visualizing uncertain information. Cartographic Perspective, 13(Fall),
10-19.

MacEachren, A. M., & Kraak, M. J. (1997). Exploratory cartographic visualization: Advancing the
agenda. Computers & Geosciences, 23(4), 335-343.

MacEachren, A. M., & Kraak, M. J. (2001). Visualization in modern Cartography. Cartography
and Geographic Information Science, 28(1), 3—12.

Monmonier, M. (1990). Strategies for the Interactive Exploration of Geographic Correlation.
Proceedings of the 4th international symposium on spatial data handling, Vol. 1, pp. 512-521.
IGU, July 1990.

Pang, A. (2001). Visualizing Uncertainty in Geo-Spatial Data. Paper prepared for a committee of
the computer science and telecommunications board.



16 Alternative Strategies for Mapping ACS Estimates and Error of Estimation 273

Pang, A., Furman, J., & Nuss, W. (February 1994). Data quality issues in visualization. In J. Rob-
ert, I. I. Moorhead, D. E. Silver, & S. P. Uselton (Eds.), SPIE Vol. 2178 Visual data exploration
and analysis (pp. 12-23). Bellingham: SPIE.

Sun, M., & Wong, D. S. (2010). Incorporating data quality information in mapping American
community survey data. Cartography and Geographic Information Science, 37(4), 285-300.

Torrieri, N., Wong, D., & Ratcliffe, M. (2011). Mapping American Community Survey Data. Paper
dated September 2011.

Wieczorek, J. (2012). (http://civilstat.com/?p=50) in his March 9, 2012 posting.

Xiao, N., Calder, C. A., & Armstrong, M. P. (2007). Assessing the effect of attribute uncertainty on
the robustness of choropleth map classification. International Journal of Geographical Infor-
mation Science, 21(2), 121-144.

Yee, L., Goodchild, M., & Lin, C.-C. (1992). Visualization of Fuzzy Scenes and Probability Fields.
Proceedings Sth international symposium on spatial data handling, pp. 480—490. University of
South Carolina, August 1992.

Zhang, J. X., & Goodchild, M. F. (2002). Uncertainty in geographic information. New York:
Taylor and Francis.





